Filter Results:
(981)
Show Results For
- All HBS Web
(981)
- People (1)
- News (155)
- Research (657)
- Events (13)
- Multimedia (3)
- Faculty Publications (562)
Show Results For
- All HBS Web
(981)
- People (1)
- News (155)
- Research (657)
- Events (13)
- Multimedia (3)
- Faculty Publications (562)
- 2025
- Working Paper
Balancing Engagement and Polarization: Multi-Objective Alignment of News Content Using LLMs
By: Mengjie Cheng, Elie Ofek and Hema Yoganarasimhan
We study how media firms can use LLMs to generate news content that aligns with multiple objectives—making content more engaging while maintaining a preferred level of polarization/slant consistent with the firm’s editorial policy. Using news articles from The New York... View Details
Keywords: Large Language Models; Content Creation; Media; Polarization; Generative Ai; Direct Preference Optimization; AI and Machine Learning; News; Perspective; Digital Marketing; Policy; Media and Broadcasting Industry
Cheng, Mengjie, Elie Ofek, and Hema Yoganarasimhan. "Balancing Engagement and Polarization: Multi-Objective Alignment of News Content Using LLMs." Harvard Business School Working Paper, No. 25-051, April 2025.
- August 2024 (Revised March 2025)
- Case
DBS' AI Journey
By: Feng Zhu, Harold Zhu and Adina Wong
Headquartered in Singapore, DBS Bank, one of Asia's leading financial services groups, embarked on a multi-year digital transformation under CEO Piyush Gupta in 2014. It was then that DBS also began experimenting with AI to drive value for the business and customers.... View Details
Keywords: Corporate Governance; AI and Machine Learning; Digital Transformation; Risk Management; Value Creation; Banking Industry; Financial Services Industry; Asia; Singapore
Zhu, Feng, Harold Zhu, and Adina Wong. "DBS' AI Journey." Harvard Business School Case 625-053, August 2024. (Revised March 2025.)
- 2024
- Working Paper
Human-Computer Interactions in Demand Forecasting and Labor Scheduling Decisions
By: Caleb Kwon, Ananth Raman and Jorge Tamayo
We investigate whether corporate officers should grant managers discretion to override AI-driven demand forecasts and labor scheduling tools. Analyzing five years of administrative data from a large grocery retailer using such an AI tool, encompassing over 500 stores,... View Details
Keywords: AI and Machine Learning; Forecasting and Prediction; Working Conditions; Performance Productivity
Kwon, Caleb, Ananth Raman, and Jorge Tamayo. "Human-Computer Interactions in Demand Forecasting and Labor Scheduling Decisions." Working Paper, April 2024.
- Web
Data Tips & Toolkits - Research Computing Services
popular platform provides automatic text captioning of the audio uploaded onto YouTube. Watson speech-to-text API : a machine learning API that can transcribe audio files into text, among other capabilities.... View Details
- April 2024
- Case
ChatGPT Enters the Voice Wars 2024
By: David B. Yoffie and Sarah von Bargen
OpenAI joined the Voice Wars in September 2023 when it launched its voice feature for ChatGPT. Initially only available to Pro subscribers, ChatGPT gave free access to all users two months later. It formed partnerships with a variety of companies, including carmakers,... View Details
Keywords: AI and Machine Learning; Partners and Partnerships; Lawsuits and Litigation; Technology Adoption; Market Entry and Exit; Technology Industry
Yoffie, David B., and Sarah von Bargen. "ChatGPT Enters the Voice Wars 2024." Harvard Business School Case 724-481, April 2024.
- February 2024
- Teaching Note
TimeCredit
By: Emanuele Colonnelli, Raymond Kluender and Shai Benjamin Bernstein
Teaching Note for HBS Case No. 824-139. TimeCredit is an artificial intelligence (AI) startup that is developing large language models (LLMs) to generate accounting memos. The case follows Ndonga Sagnia, a Gambian Harvard Business School MBA student with an accounting... View Details
- March 2022
- Article
Winner Takes All? Tech Clusters, Population Centers, and the Spatial Transformation of U.S. Invention
By: Brad Chattergoon and William R. Kerr
U.S. invention has become increasingly concentrated around major tech centers since the 1970s, with implications for how much cities across the country share in concomitant local benefits. Is invention becoming a winner-takes-all race? We explore the rising spatial... View Details
Keywords: Clusters; Invention; Agglomeration; Artificial Intelligence; Innovation and Invention; Patents; Applications and Software; Industry Clusters; AI and Machine Learning
Chattergoon, Brad, and William R. Kerr. "Winner Takes All? Tech Clusters, Population Centers, and the Spatial Transformation of U.S. Invention." Art. 104418. Research Policy 51, no. 2 (March 2022).
- September 17, 2021
- Article
AI Can Help Address Inequity—If Companies Earn Users' Trust
By: Shunyuan Zhang, Kannan Srinivasan, Param Singh and Nitin Mehta
While companies may spend a lot of time testing models before launch, many spend too little time considering how they will work in the wild. In particular, they fail to fully consider how rates of adoption can warp developers’ intent. For instance, Airbnb launched a... View Details
Keywords: Artificial Intelligence; Algorithmic Bias; Technological Innovation; Perception; Diversity; Equality and Inequality; Trust; AI and Machine Learning
Zhang, Shunyuan, Kannan Srinivasan, Param Singh, and Nitin Mehta. "AI Can Help Address Inequity—If Companies Earn Users' Trust." Harvard Business Review Digital Articles (September 17, 2021).
- January–February 2023
- Article
Forecasting COVID-19 and Analyzing the Effect of Government Interventions
By: Michael Lingzhi Li, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis and Dimitris Bertsimas
We developed DELPHI, a novel epidemiological model for predicting detected cases and deaths in the prevaccination era of the COVID-19 pandemic. The model allows for underdetection of infections and effects of government interventions. We have applied DELPHI across more... View Details
Keywords: COVID-19 Pandemic; Epidemics; Analytics and Data Science; Health Pandemics; AI and Machine Learning; Forecasting and Prediction
Li, Michael Lingzhi, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis, and Dimitris Bertsimas. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions." Operations Research 71, no. 1 (January–February 2023): 184–201.
- 29 Sep 2020
- Blog Post
New Life for Old Tech: Startup Provides Network Security Solutions for Obsolete Devices
device-specific representation of each device on the network, and our generalizable machine learning approach and software-based installation allows us to scale to all legacy and modern devices.” For Breen,... View Details
- Web
Eva Tuecke | MBA
Currently, I am particularly excited by challenges in AI interpretability, healthtech, and applications of machine learning to quantum computing. LinkedIn: Eva Tuecke View Details
- October 2024 (Revised June 2025)
- Case
Nvidia
By: Andy Wu and Matt Higgins
This case study examines Nvidia's strategic pivot from gaming GPUs to becoming a leader in general-purpose computing and AI. It explores how Nvidia leveraged its GPU architecture to dominate the growing fields of data center acceleration and AI training, outpacing... View Details
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- Web
April Chen | MBA
areas of interest: AI/ML, civic tech, education tech, algorithmic fairness and justice Formative experience at the intersection of technology and business: In Spring 2022, I designed and taught CS 96, Machine View Details
- February 2024 (Revised September 2024)
- Case
TimeCredit
By: Emanuele Colonnelli, Raymond Kluender and Shai Benjamin Bernstein
TimeCredit is an artificial intelligence (AI) startup that is developing large language models (LLMs) to generate accounting memos. The case follows Ndonga Sagnia, a Gambian Harvard Business School MBA student with an accounting background, as she decides how much... View Details
Keywords: Accounting; Business Startups; Entrepreneurship; Financing and Loans; AI and Machine Learning; Entrepreneurial Finance; Identity; Technology Industry
Colonnelli, Emanuele, Raymond Kluender, and Shai Benjamin Bernstein. "TimeCredit." Harvard Business School Case 824-139, February 2024. (Revised September 2024.)
- February 2021 (Revised June 2021)
- Case
Bairong and the Promise of Big Data
By: Lauren Cohen, Xiaoyan Zhang and Spencer C.N. Hagist
Bairong CEO Felix Zhang, in launching his credit scoring start-up that incorporates 74,000 variables per individual, found strong initial success. However, the shifting regulatory environment, growing breadth of competitors, difficulties in retaining top talent, and... View Details
Keywords: Fintech; Big Data; Artificial Intelligence; Credit Scoring; Finance; Credit; Business Startups; AI and Machine Learning; Analytics and Data Science; China
Cohen, Lauren, Xiaoyan Zhang, and Spencer C.N. Hagist. "Bairong and the Promise of Big Data." Harvard Business School Case 221-068, February 2021. (Revised June 2021.)
- 2024
- Working Paper
Old Moats for New Models: Openness, Control, and Competition in Generative AI
By: Pierre Azoulay, Joshua L. Krieger and Abhishek Nagaraj
Drawing insights from the field of innovation economics, we discuss the likely competitive environment shaping generative AI advances. Central to our analysis are the concepts of appropriability—whether firms in the industry are able to control the knowledge generated... View Details
Azoulay, Pierre, Joshua L. Krieger, and Abhishek Nagaraj. "Old Moats for New Models: Openness, Control, and Competition in Generative AI." NBER Working Paper Series, No. 7442, May 2024.
- July 2024
- Article
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp and Stefano Puntoni
Chatbots are now able to engage in sophisticated conversations with consumers. Due to the ‘black box’ nature of the algorithms, it is impossible to predict in advance how these conversations will unfold. Behavioral research provides little insight into potential safety... View Details
Keywords: Autonomy; Chatbots; New Technology; Brand Crises; Mental Health; Large Language Model; AI and Machine Learning; Behavior; Well-being; Technological Innovation; Ethics
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Journal of Consumer Psychology 34, no. 3 (July 2024): 481–491.
- September 2023
- Case
Ada: Cultivating Investors
By: Reza Satchu and Patrick Sanguineti
Mike Murchison, co-founder and CEO of Ada, has an enviable dilemma. Launched in 2016 by Murchison and his co-founder David Hariri, Ada is an AI-native company that aims to revolutionize how businesses approach customer service. The company has already attracted a buzz,... View Details
Keywords: Founder; Fundraising; Business Startups; Decisions; Entrepreneurship; Venture Capital; AI and Machine Learning; Technology Industry
Satchu, Reza, and Patrick Sanguineti. "Ada: Cultivating Investors." Harvard Business School Case 824-090, September 2023.
- April 2025 (Revised May 2025)
- Case
Adobe: GenAI Opportunity or Threat?
By: Sunil Gupta, Rajiv Lal and Allison Ciechanover
In December 2022, Adobe CEO Shantanu Narayen faced a pivotal strategic decision due to the rapid rise of generative AI image models from OpenAI, Midjourney, and StabilityAI. Adobe, a leader in digital media and marketing software with a 40-year legacy of innovation and... View Details
Keywords: Customer Relationship Management; Ethics; AI and Machine Learning; Trust; Business Strategy; Technology Industry; San Jose
Gupta, Sunil, Rajiv Lal, and Allison Ciechanover. "Adobe: GenAI Opportunity or Threat?" Harvard Business School Case 525-052, April 2025. (Revised May 2025.)