Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (642) Arrow Down
Filter Results: (642) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,015)
    • People  (1)
    • News  (156)
    • Research  (642)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (549)

Show Results For

  • All HBS Web  (1,015)
    • People  (1)
    • News  (156)
    • Research  (642)
    • Events  (13)
    • Multimedia  (3)
  • Faculty Publications  (549)
← Page 3 of 642 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • November 2023 (Revised June 2024)
  • Case

Zest AI: Machine Learning and Credit Access

By: David S. Scharfstein and Ryan Gilland
Citation
Educators
Purchase
Related
Scharfstein, David S., and Ryan Gilland. "Zest AI: Machine Learning and Credit Access." Harvard Business School Case 224-033, November 2023. (Revised June 2024.)
  • 2022
  • Working Paper

TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Keywords: Natural Language Conversations; Predictive Models; AI and Machine Learning
Citation
Read Now
Related
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
  • 01 Nov 2018
  • Working Paper Summaries

Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning

Keywords: by Xiaojia Guo, Yael Grushka-Cockayne, and Bert De Reyck; Air Transportation; Travel
  • August 2023
  • Article

Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Keywords: AI and Machine Learning; Technological Innovation; Technology Adoption
Citation
Read Now
Related
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
  • 21 Aug 2019
  • Research & Ideas

What Machine Learning Teaches Us about CEO Leadership Style

CEOs are communicators. Studies show that CEOs spend 85 percent of their time in communication-related activities, including speeches, meetings, and phone calls with people both inside and outside the firm. Now, new research using machine... View Details
Keywords: by Michael Blanding
  • Article

Productivity and Selection of Human Capital with Machine Learning

By: Aaron Chalfin, Oren Danieli, Andrew Hillis, Zubin Jelveh, Michael Luca, Jens Ludwig and Sendhil Mullainathan
Keywords: Analytics and Data Science; Selection and Staffing; Performance Productivity; Mathematical Methods; Policy
Citation
Find at Harvard
Read Now
Related
Chalfin, Aaron, Oren Danieli, Andrew Hillis, Zubin Jelveh, Michael Luca, Jens Ludwig, and Sendhil Mullainathan. "Productivity and Selection of Human Capital with Machine Learning." American Economic Review: Papers and Proceedings 106, no. 5 (May 2016): 124–127.
  • 04 Oct 2019
  • Working Paper Summaries

Soul and Machine (Learning)

Keywords: by Davide Proserpio, John R. Hauser, Xiao Liu, Tomomichi Amano et al.
  • Working Paper

Visual Uniqueness in Peer-to-Peer Marketplaces: Machine Learning Model Development, Validation, and Application

By: Flora Feng, Charis Li and Shunyuan Zhang
Peer-to-peer (P2P) marketplaces have seen exponential growth in recent years featured by unique offerings from individual providers. Despite the perceived value of uniqueness, scalable quantification of visual uniqueness in P2P platforms like Airbnb has been largely... View Details
Keywords: Peer-to-peer Markets; Marketplace Matching; AI and Machine Learning; Demand and Consumers; Digital Platforms; Marketing
Citation
Read Now
Related
Feng, Flora, Charis Li, and Shunyuan Zhang. "Visual Uniqueness in Peer-to-Peer Marketplaces: Machine Learning Model Development, Validation, and Application." SSRN Working Paper Series, No. 4665286, February 2024.
  • 2018
  • Working Paper

Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning

By: Xiaojia Guo, Yael Grushka-Cockayne and Bert De Reyck
Problem definition: In collaboration with Heathrow Airport, we develop a predictive system that generates quantile forecasts of transfer passengers’ connection times. Sampling from the distribution of individual passengers’ connection times, the system also produces... View Details
Keywords: Quantile Forecasts; Regression Tree; Copula; Passenger Flow Management; Data-driven Operations; Forecasting and Prediction; Data and Data Sets
Citation
SSRN
Read Now
Related
Guo, Xiaojia, Yael Grushka-Cockayne, and Bert De Reyck. "Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning." Harvard Business School Working Paper, No. 19-040, October 2018.
  • 26 Feb 2018
  • Working Paper Summaries

Different Strokes for Different Folks: Experimental Evidence on Complementarities Between Human Capital and Machine Learning

Keywords: by Prithwiraj Choudhury, Evan Starr, and Rajshree Agarwal; Information Technology
  • April 2018 (Revised February 2019)
  • Supplement

Improving Worker Safety in the Era of Machine Learning (B)

By: Michael W. Toffel, Dan Levy, Astrid Camille Pineda, Jose Ramon Morales Arilla and Matthew S. Johnson
Supplements the (A) case. View Details
Citation
Purchase
Related
Toffel, Michael W., Dan Levy, Astrid Camille Pineda, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (B)." Harvard Business School Supplement 618-064, April 2018. (Revised February 2019.)
  • May 2022
  • Case

AWS and Amazon SageMaker (A): The Commercialization of Machine Learning Services

By: Karim R. Lakhani, Shane Greenstein and Kerry Herman
Citation
Educators
Purchase
Related
Lakhani, Karim R., Shane Greenstein, and Kerry Herman. "AWS and Amazon SageMaker (A): The Commercialization of Machine Learning Services." Harvard Business School Case 622-060, May 2022.
  • February 2018 (Revised March 2018)
  • Case

Artificial Intelligence and the Machine Learning Revolution in Finance: Cogent Labs and the Google Cloud Platform (GCP)

By: Lauren Cohen, Christopher Malloy and William Powley
This case examines the intersection of two firms (Cogent Labs—a machine learning software firm in Tokyo; and Google, the technology infrastructure giant) attempting to exploit the benefits of artificial intelligence and machine learning in the financial services... View Details
Keywords: Technological Innovation; Finance; Growth and Development Strategy; Business Model; Applications and Software; Infrastructure; Technology Industry; Financial Services Industry
Citation
Educators
Purchase
Related
Cohen, Lauren, Christopher Malloy, and William Powley. "Artificial Intelligence and the Machine Learning Revolution in Finance: Cogent Labs and the Google Cloud Platform (GCP)." Harvard Business School Case 218-080, February 2018. (Revised March 2018.)
  • 2025
  • Article

Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments

By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Keywords: AI and Machine Learning; Mathematical Methods; Analytics and Data Science
Citation
Find at Harvard
Read Now
Related
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics 43, no. 1 (2025): 256–268.
  • November 25, 2016
  • Article

How to Tell If Machine Learning Can Solve Your Business Problem

By: Anastassia Fedyk
Citation
Register to Read
Related
Fedyk, Anastassia. "How to Tell If Machine Learning Can Solve Your Business Problem." Harvard Business Review (website) (November 25, 2016).
  • October 2018
  • Article

The Operational Value of Social Media Information

By: Ruomeng Cui, Santiago Gallino, Antonio Moreno and Dennis J. Zhang
While the value of using social media information has been established in multiple business contexts, the field of operations and supply chain management have not yet explored the possibilities it offers in improving firms' operational decisions. This study attempts to... View Details
Keywords: Machine Learning; Information; Sales; Forecasting and Prediction; Social Media
Citation
Find at Harvard
Purchase
Related
Cui, Ruomeng, Santiago Gallino, Antonio Moreno, and Dennis J. Zhang. "The Operational Value of Social Media Information." Special Issue on Big Data in Supply Chain Management. Production and Operations Management 27, no. 10 (October 2018): 1749–1774.
  • April 2024
  • Article

A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification

By: Hsin-Hsiao Scott Wang, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow and Caleb Nelson
Backgrounds: Urinary Tract Dilation (UTD) classification has been designed to be a more objective grading system to evaluate antenatal and post-natal UTD. Due to unclear association between UTD classifications to specific anomalies such as vesico-ureteral reflux (VUR),... View Details
Keywords: Health Disorders; Health Testing and Trials; AI and Machine Learning; Health Industry
Citation
Read Now
Related
Wang, Hsin-Hsiao Scott, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow, and Caleb Nelson. "A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification." Journal of Pediatric Urology 20, no. 2 (April 2024): 271–278.
  • May 2022 (Revised July 2022)
  • Supplement

AWS and Amazon SageMaker (C): The Commercialization of Machine Learning Services

By: Karim R. Lakhani, Shane Greenstein and Kerry Herman
Citation
Purchase
Related
Lakhani, Karim R., Shane Greenstein, and Kerry Herman. "AWS and Amazon SageMaker (C): The Commercialization of Machine Learning Services." Harvard Business School Supplement 622-087, May 2022. (Revised July 2022.)
  • May 2022
  • Supplement

AWS and Amazon SageMaker (B): The Commercialization of Machine Learning Services

By: Karim R. Lakhani, Shane Greenstein and Kerry Herman
Citation
Purchase
Related
Lakhani, Karim R., Shane Greenstein, and Kerry Herman. "AWS and Amazon SageMaker (B): The Commercialization of Machine Learning Services." Harvard Business School Supplement 622-086, May 2022.
  • Article

Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs

By: Michael G. Endres, Florian Hillen, Marios Salloumis, Ahmad R. Sedaghat, Stefan M. Niehues, Olivia Quatela, Henning Hanken, Ralf Smeets, Benedicta Beck-Broichsitter, Carsten Rendenbach, Karim R. Lakhani, Max Helland and Robert A. Gaudin
Periapical radiolucencies, which can be detected on panoramic radiographs, are one of the most common radiographic findings in dentistry and have a differential diagnosis including infections, granuloma, cysts, and tumors. In this study, we seek to investigate the... View Details
Keywords: Artificial Intelligence; Diagnosis; Computer-assisted; Image Interpretation; Machine Learning; Radiography; Panoramic Radiograph; AI and Machine Learning
Citation
Read Now
Related
Endres, Michael G., Florian Hillen, Marios Salloumis, Ahmad R. Sedaghat, Stefan M. Niehues, Olivia Quatela, Henning Hanken, Ralf Smeets, Benedicta Beck-Broichsitter, Carsten Rendenbach, Karim R. Lakhani, Max Helland, and Robert A. Gaudin. "Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs." Diagnostics 10, no. 6 (June 2020).
  • ←
  • 3
  • 4
  • …
  • 32
  • 33
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.