Filter Results:
(189)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Show Results For
- All HBS Web
(317)
- News (46)
- Research (189)
- Events (1)
- Multimedia (1)
- Faculty Publications (125)
Sort by
- Teaching Interest
Design of Field Research Methods (DFRM)
Field research involves collecting original data (qualitative and/or quantitative) in field sites. This course combines informal lecture and discussion with practical exercises to build specific skills for conducting field research in organizations. Readings include... View Details
- Mar 2020
- Conference Presentation
A New Analysis of Differential Privacy's Generalization Guarantees
By: Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Moshe Shenfeld
We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and... View Details
Jung, Christopher, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. "A New Analysis of Differential Privacy's Generalization Guarantees." Paper presented at the 11th Innovations in Theoretical Computer Science Conference, Seattle, March 2020.
- October 2023
- Article
Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA
By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
We study how a regulator can best target inspections. Our case study is a U.S. Occupational Safety and Health Administration (OSHA) program that randomly allocated some inspections. On average, each inspection averted 2.4 serious injuries (9%) over the next five years.... View Details
Keywords: Safety Regulations; Regulations; Regulatory Enforcement; Machine Learning Models; Safety; Operations; Service Operations; Production; Forecasting and Prediction; Decisions; United States
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Improving Regulatory Effectiveness Through Better Targeting: Evidence from OSHA." American Economic Journal: Applied Economics 15, no. 4 (October 2023): 30–67. (Profiled in the Regulatory Review.)
- Article
Oracle Efficient Private Non-Convex Optimization
By: Seth Neel, Aaron Leon Roth, Giuseppe Vietri and Zhiwei Steven Wu
One of the most effective algorithms for differentially private learning and optimization is objective perturbation. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it.... View Details
Neel, Seth, Aaron Leon Roth, Giuseppe Vietri, and Zhiwei Steven Wu. "Oracle Efficient Private Non-Convex Optimization." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020).
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- Forthcoming
- Article
An AI Method to Score Celebrity Visual Potential from Human Faces
By: Flora Feng, Shunyuan Zhang, Xiao Liu, Kannan Srinivasan and Cait Lamberton
It has long been a mantra of marketing practice that, particularly in low-involvement situations, spokespeople should be physically attractive. This paper suggests there is a higher probability of gaining fame and influence (i.e., celebrity potential) than is captured... View Details
Feng, Flora, Shunyuan Zhang, Xiao Liu, Kannan Srinivasan, and Cait Lamberton. "An AI Method to Score Celebrity Visual Potential from Human Faces." Journal of Marketing Research (JMR) (forthcoming).
- Article
Counterfactual Explanations Can Be Manipulated
By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate... View Details
Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- 14 Aug 2017
- Conference Presentation
A Convex Framework for Fair Regression
By: Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Roth
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the range from notions of group fairness to strong individual fairness. By varying... View Details
Berk, Richard, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. "A Convex Framework for Fair Regression." Paper presented at the 4th Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), August 14, 2017.
- 2023
- Article
M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models
By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
Keywords: AI and Machine Learning
Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- October 2015 (Revised October 2016)
- Case
Building Watson: Not So Elementary, My Dear! (Abridged)
By: Willy C. Shih
This case is set inside IBM Research's efforts to build a computer that can successfully take on human challengers playing the game show Jeopardy! It opens with the machine named Watson offering the incorrect answer "Toronto" to a seemingly simple question during the... View Details
Keywords: Analytics; Big Data; Business Analytics; Product Development Strategy; Machine Learning; Machine Intelligence; Artificial Intelligence; Product Development; AI and Machine Learning; Information Technology; Analytics and Data Science; Information Technology Industry; United States
Shih, Willy C. "Building Watson: Not So Elementary, My Dear! (Abridged)." Harvard Business School Case 616-025, October 2015. (Revised October 2016.)
- 2017
- Working Paper
The Need for Speed: Effects of Uncertainty Reduction in Patenting
By: Mike Horia Teodorescu
Patents are essential in commerce to establish property rights for ideas and to give equal protection to firms that develop new technologies. Young firms especially depend on the protection of intellectual property to bring a product from concept to market. However,... View Details
- 2021
- Working Paper
First Law of Motion: Influencer Video Advertising on TikTok
By: Jeremy Yang, Juanjuan Zhang and Yuhan Zhang
This paper engineers an intuitive feature that is predictive of the causal effect of influencer video advertising on product sales. We propose the concept of m-score, a summary statistic that captures the extent to which a product is advertised in the most engaging... View Details
Keywords: Influencer Advertising; Video Advertising; Computer Vision; Machine Learning; Advertising; Online Technology
Yang, Jeremy, Juanjuan Zhang, and Yuhan Zhang. "First Law of Motion: Influencer Video Advertising on TikTok." Working Paper, March 2021.
- September 2020 (Revised March 2022)
- Case
JOANN: Joannalytics Inventory Allocation Tool
By: Kris Ferreira and Srikanth Jagabathula
Michael Joyce, Vice President of Inventory Management at JOANN, championed an effort to develop and implement an inventory allocation analytics tool that used advanced analytics to predict in-season demand of seasonal items for each of JOANN’s nearly 900 stores and... View Details
Keywords: Analytics; Machine Learning; Optimization; Inventory Management; Mathematical Methods; Decision Making; Operations; Supply Chain Management; Resource Allocation; Distribution; Technology Adoption; Applications and Software; Change Management; Fashion Industry; Consumer Products Industry; Retail Industry; United States; Ohio
Ferreira, Kris, and Srikanth Jagabathula. "JOANN: Joannalytics Inventory Allocation Tool." Harvard Business School Case 621-055, September 2020. (Revised March 2022.)
- September 2014
- Article
Advancing Consumer Neuroscience
By: Ale Smidts, Ming Hsu, Alan G. Sanfey, Maarten A. S. Boksem, Richard B. Ebstein, Scott A. Huettel, Joe W. Kable, Uma R. Karmarkar, Shinobu Kitayama, Brian Knutson, Israel Liberzon, Terry Lohrenz, Mirre Stallen and Carolyn Yoon
In the first decade of consumer neuroscience, strong progress has been made in understanding how neuroscience can inform consumer decision making. Here, we sketch the development of this discipline and compare it to that of the adjacent field of neuroeconomics. We... View Details
Keywords: Consumer Neuroscience; Neuroeconomics; Social Neuroscience; Genes; Machine Learning; Meta-analysis; Consumer Behavior; Decision Making; Science
Smidts, Ale, Ming Hsu, Alan G. Sanfey, Maarten A. S. Boksem, Richard B. Ebstein, Scott A. Huettel, Joe W. Kable, Uma R. Karmarkar, Shinobu Kitayama, Brian Knutson, Israel Liberzon, Terry Lohrenz, Mirre Stallen, and Carolyn Yoon. "Advancing Consumer Neuroscience." Marketing Letters 25, no. 3 (September 2014): 257–267.
- Article
Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy
By: Edward Glaeser, Andrew Hillis, Scott Duke Kominers and Michael Luca
The proliferation of big data makes it possible to better target city services like hygiene inspections, but city governments rarely have the in-house talent needed for developing prediction algorithms. Cities could hire consultants, but a cheaper alternative is to... View Details
Keywords: User-generated Content; Operations; Tournaments; Policy-making; Machine Learning; Online Platforms; Analytics and Data Science; Mathematical Methods; City; Infrastructure; Business Processes; Government and Politics
Glaeser, Edward, Andrew Hillis, Scott Duke Kominers, and Michael Luca. "Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy." American Economic Review: Papers and Proceedings 106, no. 5 (May 2016): 114–118.
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
- June 30, 2020
- Article
Scaling Up Behavioral Science Interventions in Online Education
By: Rene F. Kizilcec, Justin Reich, Michael Yeomans, Christoph Dann, Emma Brunskill, Glenn Lopez, Selen Turkay, Joseph J. Williams and Dustin Tingley
Online education is rapidly expanding in response to rising demand for higher and continuing education, but many online students struggle to achieve their educational goals. Several behavioral science interventions have shown promise in raising student persistence and... View Details
Keywords: Online Learning; Behavioral Interventions; Scale; Education; Online Technology; Performance Improvement
Kizilcec, Rene F., Justin Reich, Michael Yeomans, Christoph Dann, Emma Brunskill, Glenn Lopez, Selen Turkay, Joseph J. Williams, and Dustin Tingley. "Scaling Up Behavioral Science Interventions in Online Education." Proceedings of the National Academy of Sciences 117, no. 26 (June 30, 2020).
- June 2022
- Article
The Use and Misuse of Patent Data: Issues for Finance and Beyond
By: Josh Lerner and Amit Seru
Patents and citations are powerful tools for understanding innovation increasingly used in financial economics (and management research more broadly). Biases may result, however, from the interactions between the truncation of patents and citations and the changing... View Details
Lerner, Josh, and Amit Seru. "The Use and Misuse of Patent Data: Issues for Finance and Beyond." Review of Financial Studies 35, no. 6 (June 2022): 2667–2704.
- April–June 2022
- Other Article
Commentary on 'Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters'
There has been a substantial discussion in various methodological and applied literatures around causal inference; especially in the use of machine learning and statistical models to understand heterogeneity in treatment effects and to make optimal decision... View Details
Keywords: Causal Inference; Treatment Effect Estimation; Treatment Assignment Policy; Human-in-the-loop; Decision Making; Fairness
McFowland III, Edward. "Commentary on 'Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters'." INFORMS Journal on Data Science 1, no. 1 (April–June 2022): 21–22.
- 06 Apr 2020
- Working Paper Summaries
A General Theory of Identification
Keywords: by Iavor Bojinov and Guillaume Basse