Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (218) Arrow Down
Filter Results: (218) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,026)
    • Faculty Publications  (218)

    Show Results For

    • All HBS Web  (1,026)
      • Faculty Publications  (218)

      Predictive ModelsRemove Predictive Models →

      ← Page 3 of 218 Results →

      Are you looking for?

      →Search All HBS Web
      • 2023
      • Working Paper

      Evaluation and Learning in R&D Investment

      By: Alexander P. Frankel, Joshua L. Krieger, Danielle Li and Dimitris Papanikolaou
      We examine the role of spillover learning in shaping the value of exploratory versus incremental R&D. Using data from drug development, we show that novel drug candidates generate more knowledge spillovers than incremental ones. Despite being less likely to reach... View Details
      Keywords: Research and Development; Forecasting and Prediction; Valuation; Pharmaceutical Industry
      Citation
      Read Now
      Purchase
      Related
      Frankel, Alexander P., Joshua L. Krieger, Danielle Li, and Dimitris Papanikolaou. "Evaluation and Learning in R&D Investment." Harvard Business School Working Paper, No. 23-074, May 2023. (NBER Working Paper Series, No. 31290, May 2023.)
      • 2023
      • Working Paper

      Auditing Predictive Models for Intersectional Biases

      By: Kate S. Boxer, Edward McFowland III and Daniel B. Neill
      Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we... View Details
      Keywords: Predictive Models; Bias; AI and Machine Learning
      Citation
      Read Now
      Related
      Boxer, Kate S., Edward McFowland III, and Daniel B. Neill. "Auditing Predictive Models for Intersectional Biases." Working Paper, June 2023.
      • 2023
      • Article

      Provable Detection of Propagating Sampling Bias in Prediction Models

      By: Pavan Ravishankar, Qingyu Mo, Edward McFowland III and Daniel B. Neill
      With an increased focus on incorporating fairness in machine learning models, it becomes imperative not only to assess and mitigate bias at each stage of the machine learning pipeline but also to understand the downstream impacts of bias across stages. Here we consider... View Details
      Citation
      Read Now
      Related
      Ravishankar, Pavan, Qingyu Mo, Edward McFowland III, and Daniel B. Neill. "Provable Detection of Propagating Sampling Bias in Prediction Models." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9562–9569. (Presented at the 37th AAAI Conference on Artificial Intelligence (2/7/23-2/14/23) in Washington, DC.)
      • June 2023
      • Article

      When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making

      By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
      As machine learning (ML) models are increasingly being employed to assist human decision makers, it becomes critical to provide these decision makers with relevant inputs which can help them decide if and how to incorporate model predictions into their decision... View Details
      Keywords: AI and Machine Learning; Decision Making
      Citation
      Read Now
      Related
      McGrath, Sean, Parth Mehta, Alexandra Zytek, Isaac Lage, and Himabindu Lakkaraju. "When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making." Transactions on Machine Learning Research (TMLR) (June 2023).
      • May 2023
      • Article

      Equilibrium Effects of Pay Transparency

      By: Zoë B. Cullen and Bobak Pakzad-Hurson
      The public discourse around pay transparency has focused on the direct effect: how workers seek to rectify newly-disclosed pay inequities through renegotiations. The question of how wage-setting and hiring practices of the firm respond in equilibrium has received... View Details
      Keywords: Pay Transparency; Online Labor Market; Privacy; Wage Gap; Corporate Disclosure; Wages; Negotiation
      Citation
      Find at Harvard
      Read Now
      Related
      Cullen, Zoë B., and Bobak Pakzad-Hurson. "Equilibrium Effects of Pay Transparency." Econometrica 91, no. 3 (May 2023): 765–802. (Lead Article.)
      • 2023
      • Article

      Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse

      By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
      As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means... View Details
      Keywords: AI and Machine Learning; Decision Choices and Conditions; Mathematical Methods
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju. "Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse." Proceedings of the International Conference on Learning Representations (ICLR) (2023).
      • April 12, 2023
      • Article

      Using AI to Adjust Your Marketing and Sales in a Volatile World

      By: Das Narayandas and Arijit Sengupta
      Why are some firms better and faster than others at adapting their use of customer data to respond to changing or uncertain marketing conditions? A common thread across faster-acting firms is the use of AI models to predict outcomes at various stages of the customer... View Details
      Keywords: Forecasting and Prediction; AI and Machine Learning; Consumer Behavior; Technology Adoption; Competitive Advantage
      Citation
      Register to Read
      Related
      Narayandas, Das, and Arijit Sengupta. "Using AI to Adjust Your Marketing and Sales in a Volatile World." Harvard Business Review Digital Articles (April 12, 2023).
      • 2023
      • Working Paper

      Feature Importance Disparities for Data Bias Investigations

      By: Peter W. Chang, Leor Fishman and Seth Neel
      It is widely held that one cause of downstream bias in classifiers is bias present in the training data. Rectifying such biases may involve context-dependent interventions such as training separate models on subgroups, removing features with bias in the collection... View Details
      Keywords: AI and Machine Learning; Analytics and Data Science; Prejudice and Bias
      Citation
      Read Now
      Related
      Chang, Peter W., Leor Fishman, and Seth Neel. "Feature Importance Disparities for Data Bias Investigations." Working Paper, March 2023.
      • April 2023
      • Article

      On the Privacy Risks of Algorithmic Recourse

      By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
      As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected... View Details
      Keywords: Recourse; Privacy Threats; AI and Machine Learning; Information
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Himabindu Lakkaraju, and Seth Neel. "On the Privacy Risks of Algorithmic Recourse." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 206 (April 2023).
      • April 2023
      • Article

      The Preference Survey Module: A Validated Instrument for Measuring Risk, Time, and Social Preferences

      By: Armin Falk, Anke Becker, Thomas Dohmen, David B. Huffman and Uwe Sunde
      Incentivized choice experiments are a key approach to measuring preferences in economics but are also costly. Survey measures are a low-cost alternative but can suffer from additional forms of measurement error due to their hypothetical nature. This paper seeks to... View Details
      Keywords: Survey Validation; Experiment; Preference Measurement; Surveys; Economics; Behavior; Measurement and Metrics
      Citation
      Find at Harvard
      Read Now
      Related
      Falk, Armin, Anke Becker, Thomas Dohmen, David B. Huffman, and Uwe Sunde. "The Preference Survey Module: A Validated Instrument for Measuring Risk, Time, and Social Preferences." Management Science 69, no. 4 (April 2023): 1935–1950.
      • 2023
      • Working Paper

      Organizational Responses to Product Cycles

      By: Achyuta Adhvaryu, Vittorio Bassi, Anant Nyshadham, Jorge Tamayo and Nicolas Torres
      Product cycles entail the mass production of new—and often increasingly complex—products on a regular basis. How do firms manage these changes? We use granular daily data from a leading automobile manufacturer to study the organizational impacts of introducing new... View Details
      Keywords: Training; Organizational Change and Adaptation; Knowledge Management; Production; Product; Organizational Structure; Auto Industry; Argentina
      Citation
      Read Now
      Related
      Adhvaryu, Achyuta, Vittorio Bassi, Anant Nyshadham, Jorge Tamayo, and Nicolas Torres. "Organizational Responses to Product Cycles." Harvard Business School Working Paper, No. 23-061, March 2023. (Revise & Resubmit Journal of Political Economy.)
      • 2023
      • Working Paper

      Complexity and Time

      By: Benjamin Enke, Thomas Graeber and Ryan Oprea
      We provide experimental evidence that core intertemporal choice anomalies -- including extreme short-run impatience, structural estimates of present bias, hyperbolicity and transitivity violations -- are driven by complexity rather than time or risk preferences. First,... View Details
      Keywords: Decision Choices and Conditions; Motivation and Incentives
      Citation
      Find at Harvard
      Purchase
      Related
      Enke, Benjamin, Thomas Graeber, and Ryan Oprea. "Complexity and Time." NBER Working Paper Series, No. 31047, March 2023.
      • March–April 2023
      • Article

      Market Segmentation Trees

      By: Ali Aouad, Adam Elmachtoub, Kris J. Ferreira and Ryan McNellis
      Problem definition: We seek to provide an interpretable framework for segmenting users in a population for personalized decision making. Methodology/results: We propose a general methodology, market segmentation trees (MSTs), for learning market... View Details
      Keywords: Decision Trees; Computational Advertising; Market Segmentation; Analytics and Data Science; E-commerce; Consumer Behavior; Marketplace Matching; Marketing Channels; Digital Marketing
      Citation
      Find at Harvard
      Read Now
      Purchase
      Related
      Aouad, Ali, Adam Elmachtoub, Kris J. Ferreira, and Ryan McNellis. "Market Segmentation Trees." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 648–667.
      • January–February 2023
      • Article

      Forecasting COVID-19 and Analyzing the Effect of Government Interventions

      By: Michael Lingzhi Li, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis and Dimitris Bertsimas
      We developed DELPHI, a novel epidemiological model for predicting detected cases and deaths in the prevaccination era of the COVID-19 pandemic. The model allows for underdetection of infections and effects of government interventions. We have applied DELPHI across more... View Details
      Keywords: COVID-19 Pandemic; Epidemics; Analytics and Data Science; Health Pandemics; AI and Machine Learning; Forecasting and Prediction
      Citation
      Read Now
      Related
      Li, Michael Lingzhi, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis, and Dimitris Bertsimas. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions." Operations Research 71, no. 1 (January–February 2023): 184–201.
      • January–February 2023
      • Article

      Data-Driven COVID-19 Vaccine Development for Janssen

      By: Dimitris Bertsimas, Michael Lingzhi Li, Xinggang Liu, Jennings Xu and Najat Khan
      The COVID-19 pandemic has spurred extensive vaccine research worldwide. One crucial part of vaccine development is the phase III clinical trial that assesses the vaccine for safety and efficacy in the prevention of COVID-19. In this work, we enumerate the first... View Details
      Keywords: COVID-19; Health Testing and Trials; Forecasting and Prediction; AI and Machine Learning; Research; Pharmaceutical Industry
      Citation
      Find at Harvard
      Purchase
      Related
      Bertsimas, Dimitris, Michael Lingzhi Li, Xinggang Liu, Jennings Xu, and Najat Khan. "Data-Driven COVID-19 Vaccine Development for Janssen." INFORMS Journal on Applied Analytics 53, no. 1 (January–February 2023): 70–84.
      • 2023
      • Working Paper

      Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development

      By: Daniel Yue, Paul Hamilton and Iavor Bojinov
      Predictive model development is understudied despite its centrality in modern artificial intelligence and machine learning business applications. Although prior discussions highlight advances in methods (along the dimensions of data, computing power, and algorithms)... View Details
      Keywords: Analytics and Data Science
      Citation
      SSRN
      Read Now
      Related
      Yue, Daniel, Paul Hamilton, and Iavor Bojinov. "Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development." Harvard Business School Working Paper, No. 23-029, December 2022. (Revised April 2023.)
      • 2022
      • Article

      Efficiently Training Low-Curvature Neural Networks

      By: Suraj Srinivas, Kyle Matoba, Himabindu Lakkaraju and Francois Fleuret
      Standard deep neural networks often have excess non-linearity, making them susceptible to issues such as low adversarial robustness and gradient instability. Common methods to address these downstream issues, such as adversarial training, are expensive and often... View Details
      Keywords: AI and Machine Learning
      Citation
      Read Now
      Related
      Srinivas, Suraj, Kyle Matoba, Himabindu Lakkaraju, and Francois Fleuret. "Efficiently Training Low-Curvature Neural Networks." Advances in Neural Information Processing Systems (NeurIPS) (2022).
      • 2022
      • Article

      Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations

      By: Tessa Han, Suraj Srinivas and Himabindu Lakkaraju
      A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This... View Details
      Keywords: Mathematical Methods; Decision Choices and Conditions; Analytics and Data Science
      Citation
      Read Now
      Related
      Han, Tessa, Suraj Srinivas, and Himabindu Lakkaraju. "Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations." Advances in Neural Information Processing Systems (NeurIPS) (2022). (Best Paper Award, International Conference on Machine Learning (ICML) Workshop on Interpretable ML in Healthcare.)
      • 2022
      • Article

      A Human-Centric Take on Model Monitoring

      By: Murtuza Shergadwala, Himabindu Lakkaraju and Krishnaram Kenthapadi
      Predictive models are increasingly used to make various consequential decisions in high-stakes domains such as healthcare, finance, and policy. It becomes critical to ensure that these models make accurate predictions, are robust to shifts in the data, do not rely on... View Details
      Keywords: AI and Machine Learning; Research and Development; Demand and Consumers
      Citation
      Read Now
      Related
      Shergadwala, Murtuza, Himabindu Lakkaraju, and Krishnaram Kenthapadi. "A Human-Centric Take on Model Monitoring." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (HCOMP) 10 (2022): 173–183.
      • October–December 2022
      • Article

      Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

      By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
      Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
      Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
      Citation
      Find at Harvard
      Register to Read
      Related
      Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
      • ←
      • 3
      • 4
      • …
      • 10
      • 11
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.