Filter Results:
(432)
Show Results For
- All HBS Web
(854)
- Faculty Publications (432)
Show Results For
- All HBS Web
(854)
- Faculty Publications (432)
- March 2022 (Revised July 2022)
- Technical Note
Linear Regression
This note provides an overview of linear regression for an introductory data science course. It begins with a discussion of correlation, and explains why correlation does not necessarily imply causation. The note then describes the method of least squares, and how to... View Details
Keywords: Data Science; Linear Regression; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Linear Regression." Harvard Business School Technical Note 622-100, March 2022. (Revised July 2022.)
- March 2022 (Revised July 2022)
- Technical Note
Statistical Inference
This note provides an overview of statistical inference for an introductory data science course. First, the note discusses samples and populations. Next the note describes how to calculate confidence intervals for means and proportions. Then it walks through the logic... View Details
Keywords: Data Science; Statistics; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Statistical Inference." Harvard Business School Technical Note 622-099, March 2022. (Revised July 2022.)
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless... View Details
Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- March 2022
- Article
Sensitivity Analysis of Agent-based Models: A New Protocol
By: Emanuele Borgonovo, Marco Pangallo, Jan Rivkin, Leonardo Rizzo and Nicolaj Siggelkow
Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such... View Details
Keywords: Agent-based Modeling; Sensitivity Analysis; Design Of Experiments; Total Order Sensitivity Indices; Organizations; Behavior; Decision Making; Mathematical Methods
Borgonovo, Emanuele, Marco Pangallo, Jan Rivkin, Leonardo Rizzo, and Nicolaj Siggelkow. "Sensitivity Analysis of Agent-based Models: A New Protocol." Computational and Mathematical Organization Theory 28, no. 1 (March 2022): 52–94.
- 2022
- Working Paper
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Working Paper, March 2022.
- March 2022
- Article
Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field
Identifying high-growth microentrepreneurs in low-income countries remains a challenge due to a scarcity of verifiable information. With a cash grant experiment in India we demonstrate that community knowledge can help target high-growth microentrepreneurs; while the... View Details
Keywords: Microentrepreneurs; Community Information; Field Experiment; Loans; Entrepreneurship; Developing Countries and Economies; Financing and Loans; Information; Mathematical Methods; India
Hussam, Reshmaan, Natalia Rigol, and Benjamin N. Roth. "Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field." American Economic Review 112, no. 3 (March 2022): 861–898.
(Online Appendix with Corrigendum—Thanks to Isabella Masetto, Diego Ubfal, and The Institute for Replication for identifying a minor coding error in the production of Table 4.)
(Online Appendix with Corrigendum—Thanks to Isabella Masetto, Diego Ubfal, and The Institute for Replication for identifying a minor coding error in the production of Table 4.)
- March 2022
- Article
Where to Locate COVID-19 Mass Vaccination Facilities?
By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new... View Details
Keywords: Vaccines; COVID-19; Health Care and Treatment; Health Pandemics; Performance Effectiveness; Analytics and Data Science; Mathematical Methods
Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
- 2022
- Working Paper
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
- November 2021
- Article
Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective
By: Iavor Bojinov, Ashesh Rambachan and Neil Shephard
In panel experiments, we randomly assign units to different interventions, measuring their outcomes, and repeating the procedure in several periods. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative... View Details
Keywords: Panel Data; Dynamic Causal Effects; Potential Outcomes; Finite Population; Nonparametric; Mathematical Methods
Bojinov, Iavor, Ashesh Rambachan, and Neil Shephard. "Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective." Quantitative Economics 12, no. 4 (November 2021): 1171–1196.
- October 1, 2021
- Article
An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance.
By: B.M. Balk, M.R. De Koster, Christian Kaps and J.L. Zofio
Cross-efficiency measurement is an extension of Data Envelopment Analysis that allows for tie-breaking ranking of the Decision Making Units (DMUs) using all the peer evaluations. In this article we examine the theory of cross-efficiency measurement by comparing a... View Details
Keywords: Efficiency Analysis; Performance Benchmarking; Warehousing; Analytics and Data Science; Performance Evaluation; Measurement and Metrics; Mathematical Methods
Balk, B.M., M.R. De Koster, Christian Kaps, and J.L. Zofio. "An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance." Art. 126261. Applied Mathematics and Computation 406 (October 1, 2021).
- September–October 2021
- Article
Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb
By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among... View Details
Keywords: Smart Pricing; Pricing Algorithm; Machine Bias; Discrimination; Racial Disparity; Social Inequality; Airbnb Revenue; Revenue; Race; Equality and Inequality; Prejudice and Bias; Price; Mathematical Methods; Accommodations Industry
Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.
- September 2021
- Article
Diagnostic Bubbles
By: Pedro Bordalo, Nicola Gennaioli, Spencer Yongwook Kwon and Andrei Shleifer
We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with two well-known mechanisms: learning from prices and... View Details
Bordalo, Pedro, Nicola Gennaioli, Spencer Yongwook Kwon, and Andrei Shleifer. "Diagnostic Bubbles." Journal of Financial Economics 141, no. 3 (September 2021).
- September 2021
- Article
Oh's 8-Universality Criterion Is Unique
Using the methods developed for the proof that the 2-universality criterion is unique, we partially characterize criteria for the n-universality of positive-definite integer-matrix quadratic forms. We then obtain the uniqueness of Oh’s 8-universality criterion as an... View Details
Keywords: N-universal Lattice; 8-universal Lattice; Universality Criteria; Quadratic Forms; Additively Indecomposable; Mathematical Methods
Kominers, Scott Duke. "Oh's 8-Universality Criterion Is Unique." Kyungpook Mathematical Journal 61, no. 3 (September 2021): 455–459.
- Article
Learning Models for Actionable Recourse
By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely... View Details
Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- June 2021
- Technical Note
Introduction to Linear Regression
By: Michael Parzen and Paul Hamilton
This technical note introduces (from an applied point of view) the theory and application of simple and multiple linear regression. The motivation for the model is introduced, as well as how to interpret the summary output with regard to prediction and statistical... View Details
- 2021
- Working Paper
Population Interference in Panel Experiments
By: Iavor I Bojinov, Kevin Wu Han and Guillaume Basse
The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in... View Details
Bojinov, Iavor I., Kevin Wu Han, and Guillaume Basse. "Population Interference in Panel Experiments." Harvard Business School Working Paper, No. 21-100, March 2021.
- Mar 2021
- Conference Presentation
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
We study the data deletion problem for convex models. By leveraging techniques from convex optimization and reservoir sampling, we give the first data deletion algorithms that are able to handle an arbitrarily long sequence of adversarial updates while promising both... View Details
Neel, Seth, Aaron Leon Roth, and Saeed Sharifi-Malvajerdi. "Descent-to-Delete: Gradient-Based Methods for Machine Unlearning." Paper presented at the 32nd Algorithmic Learning Theory Conference, March 2021.
- 2021
- Working Paper
How Much Should We Trust Staggered Difference-In-Differences Estimates?
By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
Difference-in-differences analysis with staggered treatment timing is frequently used to assess the impact of policy changes on corporate outcomes in academic research. However, recent advances in econometric theory show that such designs are likely to be biased in the... View Details
Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" European Corporate Governance Institute Finance Working Paper, No. 736/2021, February 2021. (Harvard Business School Working Paper, No. 21-112, April 2021.)