Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (415) Arrow Down
Filter Results: (415) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (624)
    • Faculty Publications  (415)

    Show Results For

    • All HBS Web  (624)
      • Faculty Publications  (415)

      Mathematical MethodsRemove Mathematical Methods →

      ← Page 3 of 415 Results →

      Are you looking for?

      →Search All HBS Web
      • 2022
      • Working Paper

      A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure

      By: Jesse M. Shapiro and Liyang Sun
      Linear panel models featuring unit and time fixed effects appear in many areas of empirical economics. An active literature studies the interpretation of the ordinary least squares estimator of the model, commonly called the two-way fixed effects (TWFE) estimator, in... View Details
      Keywords: Econometric Models; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Related
      Shapiro, Jesse M., and Liyang Sun. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure." NBER Working Paper Series, No. 29976, April 2022.
      • April 2022
      • Article

      Predictable Financial Crises

      By: Robin Greenwood, Samuel G. Hanson, Andrei Shleifer and Jakob Ahm Sørensen
      Using historical data on post-war financial crises around the world, we show that crises are substantially predictable. The combination of rapid credit and asset price growth over the prior three years, whether in the nonfinancial business or the household sector, is... View Details
      Keywords: Financial Crisis; Global Range; Forecasting and Prediction; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Purchase
      Related
      Greenwood, Robin, Samuel G. Hanson, Andrei Shleifer, and Jakob Ahm Sørensen. "Predictable Financial Crises." Journal of Finance 77, no. 2 (April 2022): 863–921.
      • March 2022 (Revised January 2025)
      • Technical Note

      Linear Regression

      By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
      This note provides an overview of linear regression for an introductory data science course. It begins with a discussion of correlation, and explains why correlation does not necessarily imply causation. The note then describes the method of least squares, and how to... View Details
      Keywords: Data Science; Linear Regression; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
      Citation
      Educators
      Purchase
      Related
      Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Linear Regression." Harvard Business School Technical Note 622-100, March 2022. (Revised January 2025.)
      • March 2022 (Revised January 2025)
      • Technical Note

      Statistical Inference

      By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
      This note provides an overview of statistical inference for an introductory data science course. First, the note discusses samples and populations. Next the note describes how to calculate confidence intervals for means and proportions. Then it walks through the logic... View Details
      Keywords: Data Science; Statistics; Mathematical Modeling; Mathematical Methods; Analytics and Data Science
      Citation
      Educators
      Purchase
      Related
      Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Statistical Inference." Harvard Business School Technical Note 622-099, March 2022. (Revised January 2025.)
      • Article

      Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)

      By: Eva Ascarza and Ayelet Israeli

      An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details

      Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
      Citation
      Read Now
      Related
      Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
      • March 2022
      • Article

      Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models

      By: Fiammetta Menchetti and Iavor Bojinov
      Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless... View Details
      Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Related
      Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
      • March 2022
      • Article

      Sensitivity Analysis of Agent-based Models: A New Protocol

      By: Emanuele Borgonovo, Marco Pangallo, Jan Rivkin, Leonardo Rizzo and Nicolaj Siggelkow
      Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such... View Details
      Keywords: Agent-based Modeling; Sensitivity Analysis; Design Of Experiments; Total Order Sensitivity Indices; Organizations; Behavior; Decision Making; Mathematical Methods
      Citation
      Read Now
      Related
      Borgonovo, Emanuele, Marco Pangallo, Jan Rivkin, Leonardo Rizzo, and Nicolaj Siggelkow. "Sensitivity Analysis of Agent-based Models: A New Protocol." Computational and Mathematical Organization Theory 28, no. 1 (March 2022): 52–94.
      • March 2022
      • Article

      Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field

      By: Reshmaan Hussam, Natalia Rigol and Benjamin N. Roth
      Identifying high-growth microentrepreneurs in low-income countries remains a challenge due to a scarcity of verifiable information. With a cash grant experiment in India we demonstrate that community knowledge can help target high-growth microentrepreneurs; while the... View Details
      Keywords: Microentrepreneurs; Community Information; Field Experiment; Loans; Entrepreneurship; Developing Countries and Economies; Financing and Loans; Information; Mathematical Methods; India
      Citation
      Find at Harvard
      Read Now
      Related
      Hussam, Reshmaan, Natalia Rigol, and Benjamin N. Roth. "Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field." American Economic Review 112, no. 3 (March 2022): 861–898.
      (Online Appendix with Corrigendum—Thanks to Isabella Masetto, Diego Ubfal, and The Institute for Replication for identifying a minor coding error in the production of Table 4.)
      • March 2022
      • Article

      Where to Locate COVID-19 Mass Vaccination Facilities?

      By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
      The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new... View Details
      Keywords: Vaccines; COVID-19; Health Care and Treatment; Health Pandemics; Performance Effectiveness; Analytics and Data Science; Mathematical Methods
      Citation
      Read Now
      Related
      Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
      • 2022
      • Working Paper

      The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective

      By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
      As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
      Keywords: AI and Machine Learning; Analytics and Data Science; Mathematical Methods
      Citation
      Read Now
      Related
      Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
      • Article

      A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects

      By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
      We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
      Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
      Citation
      Find at Harvard
      Purchase
      Related
      McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
      • November 2021
      • Article

      Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective

      By: Iavor Bojinov, Ashesh Rambachan and Neil Shephard
      In panel experiments, we randomly assign units to different interventions, measuring their outcomes, and repeating the procedure in several periods. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative... View Details
      Keywords: Panel Data; Dynamic Causal Effects; Potential Outcomes; Finite Population; Nonparametric; Mathematical Methods
      Citation
      Read Now
      Related
      Bojinov, Iavor, Ashesh Rambachan, and Neil Shephard. "Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective." Quantitative Economics 12, no. 4 (November 2021): 1171–1196.
      • October 1, 2021
      • Article

      An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance.

      By: B.M. Balk, M.R. De Koster, Christian Kaps and J.L. Zofio
      Cross-efficiency measurement is an extension of Data Envelopment Analysis that allows for tie-breaking ranking of the Decision Making Units (DMUs) using all the peer evaluations. In this article we examine the theory of cross-efficiency measurement by comparing a... View Details
      Keywords: Efficiency Analysis; Performance Benchmarking; Warehousing; Analytics and Data Science; Performance Evaluation; Measurement and Metrics; Mathematical Methods
      Citation
      Read Now
      Related
      Balk, B.M., M.R. De Koster, Christian Kaps, and J.L. Zofio. "An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance." Art. 126261. Applied Mathematics and Computation 406 (October 1, 2021).
      • September–October 2021
      • Article

      Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb

      By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
      We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among... View Details
      Keywords: Smart Pricing; Pricing Algorithm; Machine Bias; Discrimination; Racial Disparity; Social Inequality; Airbnb Revenue; Revenue; Race; Equality and Inequality; Prejudice and Bias; Price; Mathematical Methods; Accommodations Industry
      Citation
      SSRN
      Find at Harvard
      Related
      Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.
      • September 2021
      • Article

      Diagnostic Bubbles

      By: Pedro Bordalo, Nicola Gennaioli, Spencer Yongwook Kwon and Andrei Shleifer
      We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with two well-known mechanisms: learning from prices and... View Details
      Keywords: Bubble; Speculation; Diagnostic Expectations; Price Bubble; Mathematical Methods
      Citation
      Find at Harvard
      Related
      Bordalo, Pedro, Nicola Gennaioli, Spencer Yongwook Kwon, and Andrei Shleifer. "Diagnostic Bubbles." Journal of Financial Economics 141, no. 3 (September 2021).
      • September 2021
      • Article

      Oh's 8-Universality Criterion Is Unique

      By: Scott Duke Kominers
      Using the methods developed for the proof that the 2-universality criterion is unique, we partially characterize criteria for the n-universality of positive-definite integer-matrix quadratic forms. We then obtain the uniqueness of Oh’s 8-universality criterion as an... View Details
      Keywords: N-universal Lattice; 8-universal Lattice; Universality Criteria; Quadratic Forms; Additively Indecomposable; Mathematical Methods
      Citation
      Read Now
      Related
      Kominers, Scott Duke. "Oh's 8-Universality Criterion Is Unique." Kyungpook Mathematical Journal 61, no. 3 (September 2021): 455–459.
      • Article

      Learning Models for Actionable Recourse

      By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
      As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely... View Details
      Keywords: Machine Learning Models; Recourse; Algorithm; Mathematical Methods
      Citation
      Read Now
      Related
      Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • June 2021
      • Technical Note

      Introduction to Linear Regression

      By: Michael Parzen and Paul Hamilton
      This technical note introduces (from an applied point of view) the theory and application of simple and multiple linear regression. The motivation for the model is introduced, as well as how to interpret the summary output with regard to prediction and statistical... View Details
      Keywords: Linear Regression; Regression; Analysis; Forecasting and Prediction; Risk and Uncertainty; Theory; Compensation and Benefits; Mathematical Methods; Analytics and Data Science
      Citation
      Educators
      Related
      Parzen, Michael, and Paul Hamilton. "Introduction to Linear Regression." Harvard Business School Technical Note 621-086, June 2021.
      • 2021
      • Working Paper

      Population Interference in Panel Experiments

      By: Iavor I Bojinov, Kevin Wu Han and Guillaume Basse
      The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in... View Details
      Keywords: Finite Population; Potential Outcomes; Dynamic Causal Effects; Mathematical Methods
      Citation
      SSRN
      Read Now
      Related
      Bojinov, Iavor I., Kevin Wu Han, and Guillaume Basse. "Population Interference in Panel Experiments." Harvard Business School Working Paper, No. 21-100, March 2021.
      • Mar 2021
      • Conference Presentation

      Descent-to-Delete: Gradient-Based Methods for Machine Unlearning

      By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
      We study the data deletion problem for convex models. By leveraging techniques from convex optimization and reservoir sampling, we give the first data deletion algorithms that are able to handle an arbitrarily long sequence of adversarial updates while promising both... View Details
      Keywords: Machine Learning; Unlearning Algorithm; Mathematical Methods
      Citation
      Read Now
      Related
      Neel, Seth, Aaron Leon Roth, and Saeed Sharifi-Malvajerdi. "Descent-to-Delete: Gradient-Based Methods for Machine Unlearning." Paper presented at the 32nd Algorithmic Learning Theory Conference, March 2021.
      • ←
      • 3
      • 4
      • …
      • 20
      • 21
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.