Filter Results:
(266)
Show Results For
- All HBS Web
(1,183)
- Faculty Publications (266)
Show Results For
- All HBS Web
(1,183)
- Faculty Publications (266)
- February 2022 (Revised November 2022)
- Case
Nuritas
By: Mitchell Weiss, Satish Tadikonda, Vincent Dessain and Emer Moloney
Nora Khaldi had built a technology “to unlock the power of nature” in the service of extending human lifespan and improving health, and now in April 2020 was debating telling her Board of Directors she wanted to put on ice some of her discoveries. Nuritas, the company... View Details
Keywords: Cash Burn; Cash Flow Analysis; Pharmaceutical Companies; Founder; Artificial Intelligence; AI; Entrepreneurship; Health Testing and Trials; Health Care and Treatment; Decision Making; Market Entry and Exit; AI and Machine Learning; Pharmaceutical Industry
Weiss, Mitchell, Satish Tadikonda, Vincent Dessain, and Emer Moloney. "Nuritas." Harvard Business School Case 822-080, February 2022. (Revised November 2022.)
- January 2022
- Technical Note
Ethical Analysis: Well-Being and Rights
By: Nien-hê Hsieh and Christopher Diak
This note introduces students to two central concepts for ethical analysis: well-being and rights. It illustrates ways in which they figure in managerial decisions and challenges that arise, including how to frame trade-offs across individual well-being and... View Details
Hsieh, Nien-hê, and Christopher Diak. "Ethical Analysis: Well-Being and Rights." Harvard Business School Technical Note 322-065, January 2022.
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
- Article
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
By: Dylan Slack, Sophie Hilgard, Sameer Singh and Himabindu Lakkaraju
As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by... View Details
Keywords: Black Box Explanations; Bayesian Modeling; Decision Making; Risk and Uncertainty; Information Technology
Slack, Dylan, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. "Reliable Post hoc Explanations: Modeling Uncertainty in Explainability." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- November 2021 (Revised December 2021)
- Supplement
PittaRosso (B): Human and Machine Learning
By: Ayelet Israeli
This case supplements the "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion" case, and provides major highlights on what happened at the company since the first case. View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Israeli, Ayelet. "PittaRosso (B): Human and Machine Learning." Harvard Business School Supplement 522-047, November 2021. (Revised December 2021.)
- October 2021 (Revised March 2022)
- Supplement
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli and Fabrizio Fantini
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; Retail Industry; Italy
- October 2021 (Revised June 2022)
- Case
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; AI; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Israeli, Ayelet. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Case 522-046, October 2021. (Revised June 2022.)
- October 1, 2021
- Article
An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance.
By: B.M. Balk, M.R. De Koster, Christian Kaps and J.L. Zofio
Cross-efficiency measurement is an extension of Data Envelopment Analysis that allows for tie-breaking ranking of the Decision Making Units (DMUs) using all the peer evaluations. In this article we examine the theory of cross-efficiency measurement by comparing a... View Details
Keywords: Efficiency Analysis; Performance Benchmarking; Warehousing; Analytics and Data Science; Performance Evaluation; Measurement and Metrics; Mathematical Methods
Balk, B.M., M.R. De Koster, Christian Kaps, and J.L. Zofio. "An Evaluation of Cross-efficiency Methods: With an Application to Warehouse Performance." Art. 126261. Applied Mathematics and Computation 406 (October 1, 2021).
- August 2021 (Revised February 2024)
- Case
Data Science at the Warriors
By: Iavor I. Bojinov and Michael Parzen
The case explores the development and early growth of a data science team at the Golden State Warriors, an NBA team based in San Francisco. The case begins by explaining the initial rationale for investing in data science, then covers a debate on the appropriate team... View Details
Keywords: Digital Marketing; Analysis; Forecasting and Prediction; Technological Innovation; Information Technology; Analytics and Data Science; Sports Industry; San Francisco; United States
Bojinov, Iavor I., and Michael Parzen. "Data Science at the Warriors." Harvard Business School Case 622-048, August 2021. (Revised February 2024.)
- August 2021
- Case
Precision Paint Co.
Describes a marketing director about to launch a new process for demand forecasting. Provides data that allow students to do a multivariable regression analysis. A rewritten version of an earlier case. View Details
Bojinov, Iavor I., Chiara Farronato, Janice H. Hammond, Michael Parzen, and Paul Hamilton. "Precision Paint Co." Harvard Business School Case 622-055, August 2021.
- May 2021 (Revised February 2024)
- Teaching Note
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Ayelet Israeli and Jill Avery
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
- April 2021
- Teaching Note
Social Media War 2021: Snap vs. Facebook vs. TikTok
By: David B. Yoffie and Daniel Fisher
This teaching note provides analysis and a teaching plan for the Social Media War 2021: Snap vs. Facebook vs. TikTok case. View Details
- April 2021 (Revised March 2024)
- Case
Social Media War 2021: Snap vs. Facebook vs. TikTok
By: David B. Yoffie and Daniel Fisher
This case explores the competitive war between Snap, Facebook, and TikTok in 2021. The strategic focus is on Snapchat: how should it respond to the emergence of TikTok, and how should it compete with the dominant competitor in its space—Facebook. The case examines... View Details
Keywords: Strategy Development; Competitor Analysis; Strategy; Network Effects; Competitive Strategy; Decision Choices and Conditions; Social Media
Yoffie, David B., and Daniel Fisher. "Social Media War 2021: Snap vs. Facebook vs. TikTok." Harvard Business School Case 721-443, April 2021. (Revised March 2024.)
- March 2021
- Supplement
Artea (A), (B), (C), and (D): Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
Power Point Supplement to Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on... View Details
Keywords: Targeted Advertising; Targeting; Algorithmic Data; Bias; A/B Testing; Experiment; Advertising; Gender; Race; Diversity; Marketing; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
- March 2021
- Article
The Crowd Emotion Amplification Effect
By: Amit Goldenberg, Erika Weisz, Timothy D. Sweeney, Mina Cikara and James Gross
How do people go about reading a room or taking the temperature of a crowd? When people catch a brief glimpse of an array of faces, they can only focus their attention on some of the faces. We propose that perceivers preferentially attend to faces exhibiting strong... View Details
Goldenberg, Amit, Erika Weisz, Timothy D. Sweeney, Mina Cikara, and James Gross. "The Crowd Emotion Amplification Effect." Psychological Science 32, no. 3 (March 2021): 437–450.
- February 2021
- Background Note
Jobs to Be Done: A Toolbox
By: Derek C. M. van Bever, Bob Moesta, Iuliana Mogosanu, Shaye Roseman and Katie Zandbergen
The Jobs to Be Done methodology is both a theory and a practical approach for understanding customer behavior and why people make the choices they make. Many practitioners, whether they work for startups or incumbent businesses, find Jobs to Be Done useful because it... View Details
Keywords: Customer Value and Value Chain; Decision Choices and Conditions; Knowledge Acquisition; Attitudes; Perception; Theory; Behavior; Customer Relationship Management
van Bever, Derek C. M., Bob Moesta, Iuliana Mogosanu, Shaye Roseman, and Katie Zandbergen. "Jobs to Be Done: A Toolbox." Harvard Business School Background Note 321-095, February 2021.
- January 2021 (Revised March 2021)
- Case
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Jill Avery, Ayelet Israeli and Emma von Maur
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Preference Prediction; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
Avery, Jill, Ayelet Israeli, and Emma von Maur. "THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)." Harvard Business School Case 521-070, January 2021. (Revised March 2021.)
- Article
Towards Robust and Reliable Algorithmic Recourse
By: Sohini Upadhyay, Shalmali Joshi and Himabindu Lakkaraju
As predictive models are increasingly being deployed in high-stakes decision making (e.g., loan
approvals), there has been growing interest in post-hoc techniques which provide recourse to affected
individuals. These techniques generate recourses under the assumption... View Details
Keywords: Machine Learning Models; Algorithmic Recourse; Decision Making; Forecasting and Prediction
Upadhyay, Sohini, Shalmali Joshi, and Himabindu Lakkaraju. "Towards Robust and Reliable Algorithmic Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
- November 2020
- Case
Axis My India
By: Ananth Raman, Ann Winslow and Kairavi Dey
Pradeep Gupta founded Axis My India (AMI) as a printing and publishing company in 1998. In 2013, AMI expanded into consumer research and election forecasting. Although a relatively unknown entity, AMI predicted several election results accurately. Gupta describes AMI’s... View Details
Keywords: Market Research; Operations; Management; Infrastructure; Logistics; Service Operations; Political Elections; Forecasting and Prediction; Asia; India
Raman, Ananth, Ann Winslow, and Kairavi Dey. "Axis My India." Harvard Business School Case 621-075, November 2020.
- November 2020
- Teaching Note
Valuing Celgene's CVR
By: Benjamin C. Esty and Daniel Fisher
Teaching Note for HBS Case No. 221-031. When Bristol-Myers Squibb (BMS) acquired Celgene Corporation in November 2019, Celgene shareholders received cash, BMS stock, and a contingent value right (CVRs) that would pay $9 if the U.S. Food and Drug Administration (FDA)... View Details