Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (759) Arrow Down
Filter Results: (759) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (759)
    • News  (222)
    • Research  (372)
    • Events  (12)
    • Multimedia  (8)
  • Faculty Publications  (293)

Show Results For

  • All HBS Web  (759)
    • News  (222)
    • Research  (372)
    • Events  (12)
    • Multimedia  (8)
  • Faculty Publications  (293)
← Page 25 of 759 Results →
  • January 2018 (Revised March 2019)
  • Case

Autonomous Vehicles: The Rubber Hits the Road...but When?

By: William Kerr, Allison Ciechanover, Jeff Huizinga and James Palano
The rise of autonomous vehicles has enormous implications for business and society. Despite the many headlines and significant investment in the technology by early 2019, it was still unclear when truly autonomous vehicles would be a commercial reality. Students will... View Details
Keywords: Technology Management; Artificial Intelligence; General Management; Robotics; Technological Innovation; Transportation; Disruption; Information Technology; Decision Making; AI and Machine Learning; Auto Industry; Technology Industry
Citation
Educators
Purchase
Related
Kerr, William, Allison Ciechanover, Jeff Huizinga, and James Palano. "Autonomous Vehicles: The Rubber Hits the Road...but When?" Harvard Business School Case 818-088, January 2018. (Revised March 2019.)
  • 29 Nov 2023
  • News

A Holiday Benefit Dinner in LA; Seattle Club Revival Underway

there.” When they met up at a Global Networking Night in 2019, the two agreed they could combine Ayengar’s experience with launching the Singapore club with Weintraub’s business development skills to reboot the Seattle club. After an initial push was delayed View Details
Keywords: Margie Kelley
  • Web

Impact Stories - Business History

Capitalism Re: Ai Hisano Expanding Horizons Re: Melanie Sheehan Chandler’s Legacies Re: Xavier Duran Intriguing Questions Re: Aditya Todi Business and Society Re: Melanie Sperling Platform for Dialogue Re:... View Details
  • 2019
  • Article

An Empirical Study of Rich Subgroup Fairness for Machine Learning

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Keywords: Machine Learning; Fairness; AI and Machine Learning
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
  • 26 Jan 2024
  • Blog Post

Career Advice from the Guests of the HBS Climate Rising Podcast

be impacted by the effects of climate change, so it is critical to have people in many areas who want to find solutions and drive forward the climate agenda. Every role will need to take climate action and every organization will need... View Details
  • October–December 2022
  • Article

Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Citation
Find at Harvard
Register to Read
Related
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
  • 2022
  • Working Paper

TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Keywords: Natural Language Conversations; Predictive Models; AI and Machine Learning
Citation
Read Now
Related
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
  • January 2021
  • Article

Machine Learning for Pattern Discovery in Management Research

By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Citation
Find at Harvard
Read Now
Related
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
  • February 2024
  • Teaching Note

Data-Driven Denim: Financial Forecasting at Levi Strauss

By: Mark Egan
Teaching Note for HBS Case No. 224-029. Levi Strauss & Co. (“Levi Strauss”) partnered with the IT services company Wipro to incorporate more sophisticated methods, such as machine learning, into their financial forecasting process starting in 2018. The decision to... View Details
Keywords: Forecasting; Regression; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Apparel and Accessories Industry; United States
Citation
Purchase
Related
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Teaching Note 224-073, February 2024.
  • 09 Jun 2024
  • Blog Post

The EC Formula: MBA Class of 2024 Looks Back

Professor Esty emphasized the importance of having a viewpoint backed up by data—I feel better equipped going into the working world having been forced to reckon with my values and how that applies to corporate policy issues. Why did you... View Details
  • 2023
  • Article

M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models

By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
Keywords: AI and Machine Learning
Citation
Related
Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).
  • 2023
  • Working Paper

Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness

By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Keywords: AI and Machine Learning; Forecasting and Prediction; Prejudice and Bias
Citation
Read Now
Related
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
  • June 2021
  • Article

From Predictions to Prescriptions: A Data-driven Response to COVID-19

By: Dimitris Bertsimas, Léonard Boussioux, Ryan Cory-Wright, Arthur Delarue, Vassilis Digalakis Jr, Alexander Jacquillat, Driss Lahlou Kitane, Galit Lukin, Michael Lingzhi Li, Luca Mingardi, Omid Nohadani, Agni Orfanoudaki, Theodore Papalexopoulos, Ivan Paskov, Jean Pauphilet, Omar Skali Lami, Bartolomeo Stellato, Hamza Tazi Bouardi, Kimberly Villalobos Carballo, Holly Wiberg and Cynthia Zeng
The COVID-19 pandemic has created unprecedented challenges worldwide. Strained healthcare providers make difficult decisions on patient triage, treatment and care management on a daily basis. Policy makers have imposed social distancing measures to slow the disease, at... View Details
Keywords: COVID-19; Health Pandemics; AI and Machine Learning; Forecasting and Prediction; Analytics and Data Science
Citation
Read Now
Related
Bertsimas, Dimitris, Léonard Boussioux, Ryan Cory-Wright, Arthur Delarue, Vassilis Digalakis Jr, Alexander Jacquillat, Driss Lahlou Kitane, Galit Lukin, Michael Lingzhi Li, Luca Mingardi, Omid Nohadani, Agni Orfanoudaki, Theodore Papalexopoulos, Ivan Paskov, Jean Pauphilet, Omar Skali Lami, Bartolomeo Stellato, Hamza Tazi Bouardi, Kimberly Villalobos Carballo, Holly Wiberg, and Cynthia Zeng. "From Predictions to Prescriptions: A Data-driven Response to COVID-19." Health Care Management Science 24, no. 2 (June 2021): 253–272.
  • 2021
  • Working Paper

An Empirical Study of Time Allotment and Delays in E-commerce Delivery

By: M. Balakrishnan, MoonSoo Choi and Natalie Epstein
Problem definition: We study how having more time allotted to deliver an order affects the speed of the delivery process. Furthermore, we seek to predict orders that are likely to be delayed early in the delivery process so that actions can be taken to avoid delays.... View Details
Keywords: Logistics; E-commerce; Mathematical Methods; AI and Machine Learning; Performance Productivity
Citation
SSRN
Related
Balakrishnan, M., MoonSoo Choi, and Natalie Epstein. "An Empirical Study of Time Allotment and Delays in E-commerce Delivery." Working Paper, December 2021.
  • Web

Organizational Behavior Awards & Honors - Faculty & Research

Data, Algorithms and AI (Harvard Business Review Press, 2022) with Paul Leonardi. Ryan L. Raffaelli : Runner-up for the 2024 Best Entrepreneurship Paper Award from the Academy of Management, Organization and Management Theory Division,... View Details
  • 2019
  • Working Paper

Soul and Machine (Learning)

By: Davide Proserpio, John R. Hauser, Xiao Liu, Tomomichi Amano, Alex Burnap, Tong Guo, Dokyun Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu and Hema Yoganarasimhan
Machine learning is bringing us self-driving cars, improved medical diagnostics, and machine translation, but can it improve marketing decisions? It can. Machine learning models predict extremely well, are scalable to “big data,” and are a natural fit to rich media... View Details
Keywords: Machine Learning; Technological Innovation; Marketing; AI and Machine Learning
Citation
SSRN
Read Now
Related
Proserpio, Davide, John R. Hauser, Xiao Liu, Tomomichi Amano, Alex Burnap, Tong Guo, Dokyun Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu, and Hema Yoganarasimhan. "Soul and Machine (Learning)." Harvard Business School Working Paper, No. 20-036, September 2019.
  • 05 Mar 2019
  • First Look

New Research and Ideas, March 5, 2019

which is hard to explain by the traditional leverage tradeoff with financial distress that emphasizes downside risk. The results are robust to a variety of specification choices and control variables. Publisher's link:... View Details
Keywords: Dina Gerdeman
  • March–April 2023
  • Article

Pricing for Heterogeneous Products: Analytics for Ticket Reselling

By: Michael Alley, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li and Georgia Perakis
Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including endogeneity, heterogeneity in... View Details
Keywords: Price; Demand and Consumers; AI and Machine Learning; Investment Return; Entertainment and Recreation Industry; Sports Industry
Citation
Find at Harvard
Read Now
Purchase
Related
Alley, Michael, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li, and Georgia Perakis. "Pricing for Heterogeneous Products: Analytics for Ticket Reselling." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 409–426.
  • 2021
  • Chapter

Towards a Unified Framework for Fair and Stable Graph Representation Learning

By: Chirag Agarwal, Himabindu Lakkaraju and Marinka Zitnik
As the representations output by Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes important to ensure that these representations are fair and stable. In this work, we establish a key connection between counterfactual... View Details
Keywords: Graph Neural Networks; AI and Machine Learning; Prejudice and Bias
Citation
Read Now
Related
Agarwal, Chirag, Himabindu Lakkaraju, and Marinka Zitnik. "Towards a Unified Framework for Fair and Stable Graph Representation Learning." In Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence, edited by Cassio de Campos and Marloes H. Maathuis, 2114–2124. AUAI Press, 2021.
  • 06 Aug 2019
  • Cold Call Podcast

Super Bowl Ads Sell Products, but Do They Sell Brands?

road. He goes on to say, "When there's no man around, Goodyear should be." It probably shouldn't be surprising that advertisers took a chauvinistic tone for spots appearing on a game that was expected to be watched mostly by... View Details
Keywords: Advertising; Sports; Entertainment & Recreation; Media & Broadcasting
  • ←
  • 25
  • 26
  • …
  • 37
  • 38
  • →
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.