Filter Results:
(621)
Show Results For
- All HBS Web
(1,031)
- People (1)
- News (187)
- Research (621)
- Events (11)
- Multimedia (3)
- Faculty Publications (502)
Show Results For
- All HBS Web
(1,031)
- People (1)
- News (187)
- Research (621)
- Events (11)
- Multimedia (3)
- Faculty Publications (502)
Sort by
- October 2024
- Case
Nvidia
By: Andy Wu and Matt Higgins
This case study examines Nvidia's strategic pivot from gaming GPUs to becoming a leader in general-purpose computing and AI. It explores how Nvidia leveraged its GPU architecture to dominate the growing fields of data center acceleration and AI training, outpacing... View Details
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false... View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- Working Paper
AI in Disguise—How AI-generated Ads' Visual Cues Shape Consumer Perception and Performance
By: Yannick Exner, Jochen Hartmann, Oded Netzer and Shunyuan Zhang
Generative AI’s recent advancements in creating content have offered vast potential to transform the advertising industry. This research investigates the impact of generative AI-enabled visual ad creation on real-world advertising effectiveness. For this purpose, we... View Details
Keywords: Digital Marketing; AI and Machine Learning; Advertising; Consumer Behavior; Advertising Industry
Exner, Yannick, Jochen Hartmann, Oded Netzer, and Shunyuan Zhang. "AI in Disguise—How AI-generated Ads' Visual Cues Shape Consumer Perception and Performance." SSRN Working Paper Series, No. 5096969.
- January 2024 (Revised February 2024)
- Case
OpenAI: Idealism Meets Capitalism
By: Shikhar Ghosh and Shweta Bagai
In November 2023, the board of OpenAI, one of the most successful companies in the history of technology, decided to fire Sam Altman, its charismatic and influential CEO. Their decision shocked the corporate world and had people wondering why OpenAI had designed a... View Details
Keywords: AI; AI and Machine Learning; Governing and Advisory Boards; Ethics; Strategy; Technological Innovation; Leadership
Ghosh, Shikhar, and Shweta Bagai. "OpenAI: Idealism Meets Capitalism." Harvard Business School Case 824-134, January 2024. (Revised February 2024.)
- January–February 2023
- Article
Forecasting COVID-19 and Analyzing the Effect of Government Interventions
By: Michael Lingzhi Li, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis and Dimitris Bertsimas
We developed DELPHI, a novel epidemiological model for predicting detected cases and deaths in the prevaccination era of the COVID-19 pandemic. The model allows for underdetection of infections and effects of government interventions. We have applied DELPHI across more... View Details
Keywords: COVID-19 Pandemic; Epidemics; Analytics and Data Science; Health Pandemics; AI and Machine Learning; Forecasting and Prediction
Li, Michael Lingzhi, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis, and Dimitris Bertsimas. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions." Operations Research 71, no. 1 (January–February 2023): 184–201.
- May–June 2024
- Article
Should Your Brand Hire a Virtual Influencer?
By: Serim Hwang, Shunyuan Zhang, Xiao Liu and Kannan Srinivasan
Followers respond more favorably to sponsored posts by virtual influencers versus those by humans, costs are lower, and creating an influencer from scratch allows marketers to introduce more diversity. View Details
Hwang, Serim, Shunyuan Zhang, Xiao Liu, and Kannan Srinivasan. "Should Your Brand Hire a Virtual Influencer?" Harvard Business Review 102, no. 3 (May–June 2024): 56–60.
- 08 Feb 2016
- Research & Ideas
The Civic Benefits of Google Street View and Yelp
Naik’s images with household income levels for some 2,400 blocks, provided by the city online. “The incomes act as labels for the images, and then the machine learns the association between how the features... View Details
- Teaching Interest
Overview
By: V.G. Narayanan
I teach accounting to MBA students, executives, and Harvard Extension School students. I teach topics from both financial and managerial accounting. I also train professors in teaching by the case method. View Details
- 2024
- Working Paper
AI Companions Reduce Loneliness
By: Julian De Freitas, Ahmet K Uguralp, Zeliha O Uguralp and Puntoni Stefano
Chatbots are now able to engage in sophisticated conversations with consumers in the domain of relationships, providing a potential coping solution to widescale societal loneliness. Behavioral research provides little insight into whether these applications are... View Details
De Freitas, Julian, Ahmet K Uguralp, Zeliha O Uguralp, and Puntoni Stefano. "AI Companions Reduce Loneliness." Harvard Business School Working Paper, No. 24-078, June 2024.
- 2024
- Working Paper
Generative AI and the Nature of Work
By: Manuel Hoffmann, Sam Boysel, Frank Nagle, Sida Peng and Kevin Xu
Recent advances in artificial intelligence (AI) technology demonstrate considerable potential to
complement human capital intensive activities. While an emerging literature documents wide-ranging productivity
effects of AI, relatively little attention has been paid... View Details
Keywords: Generative Ai; Digital Work; Open Source Software; Knowledge Economy; AI and Machine Learning; Open Source Distribution; Organizational Structure; Performance Productivity; Labor
Hoffmann, Manuel, Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu. "Generative AI and the Nature of Work." Harvard Business School Working Paper, No. 25-021, October 2024.
- Article
Use of Crowd Innovation to Develop an Artificial Intelligence-Based Solution for Radiation Therapy Targeting
By: Raymond H. Mak, Michael G. Endres, Jin Hyun Paik, Rinat A. Sergeev, Hugo Aerts, Christopher L. Williams, Karim R. Lakhani and Eva C. Guinan
Importance: Radiation therapy (RT) is a critical cancer treatment, but the existing radiation oncologist work force does not meet growing global demand. One key physician task in RT planning involves tumor segmentation for targeting, which requires substantial... View Details
Keywords: Crowdsourcing; AI Algorithms; Health Care and Treatment; Collaborative Innovation and Invention; AI and Machine Learning
Mak, Raymond H., Michael G. Endres, Jin Hyun Paik, Rinat A. Sergeev, Hugo Aerts, Christopher L. Williams, Karim R. Lakhani, and Eva C. Guinan. "Use of Crowd Innovation to Develop an Artificial Intelligence-Based Solution for Radiation Therapy Targeting." JAMA Oncology 5, no. 5 (May 2019): 654–661.
- October 2023
- Case
Fixie and Conversational AI Sidekicks
By: Jeffrey J. Bussgang and Carin-Isabel Knoop
In March 2023, Fixie Co-Founder and Chief Architect Matt Welsh and co-founders had the kind of meeting no founders want to have. The president of leading artificial intelligence (AI) research and deployment firm OpenAI, which had catapulted into fame with its ChatGPT... View Details
Keywords: Large Language Model; Entrepreneurship; Decision Choices and Conditions; AI and Machine Learning; Technological Innovation; Competitive Strategy; Technology Industry; United States
Bussgang, Jeffrey J., and Carin-Isabel Knoop. "Fixie and Conversational AI Sidekicks." Harvard Business School Case 824-037, October 2023.
- 18 Feb 2009
- First Look
First Look: February 18, 2009
Working PapersDeterring Online Advertising Fraud Through Optimal Payment in Arrears (revised) Author:Benjamin Edelman Abstract Online advertisers face substantial difficulty in selecting and supervising small advertising partners. Fraud... View Details
Keywords: Martha Lagace
- 10 Dec 2013
- First Look
First Look: December 10
time and markets. Specifically, we build a model in which two firms that differ in their capabilities enter sequentially into two markets with different potentials for profit. The model is solved using game theory under three learning... View Details
Keywords: Sean Silverthorne
- 2024
- Working Paper
Climate Solutions, Transition Risk, and Stock Returns
By: Shirley Lu, Edward J. Riedl, Simon Xu and George Serafeim
Using large language models to measure firms' climate solution products and services, we find that high-climate solution firms exhibit lower stock returns and higher market valuation multiples. Their stock prices respond positively to events signaling increased demand... View Details
Keywords: Technology; Generative Ai; Large Language Models; Climate Finance; Climate Change; Innovation and Invention; Environmental Sustainability; AI and Machine Learning; Investment; Financial Markets
Lu, Shirley, Edward J. Riedl, Simon Xu, and George Serafeim. "Climate Solutions, Transition Risk, and Stock Returns." Harvard Business School Working Paper, No. 25-024, November 2024.
- July 2023
- Supplement
Honeycomb (B): Jumping on The Generative AI Bandwagon?
By: Jeffrey J. Bussgang and Kumba Sennaar
Honeycomb, an audio app enabling users to record stories and save family memories, considers pivoting to embrace generative AI. What should the co-founders business model look like if they pursued this new direction? View Details
- February 2024 (Revised September 2024)
- Case
TimeCredit
By: Emanuele Colonnelli, Raymond Kluender and Shai Benjamin Bernstein
TimeCredit is an artificial intelligence (AI) startup that is developing large language models (LLMs) to generate accounting memos. The case follows Ndonga Sagnia, a Gambian Harvard Business School MBA student with an accounting background, as she decides how much... View Details
Keywords: Accounting; Business Startups; Entrepreneurship; Financing and Loans; AI and Machine Learning; Entrepreneurial Finance; Identity; Technology Industry
Colonnelli, Emanuele, Raymond Kluender, and Shai Benjamin Bernstein. "TimeCredit." Harvard Business School Case 824-139, February 2024. (Revised September 2024.)
- February 2021 (Revised June 2021)
- Case
Bairong and the Promise of Big Data
By: Lauren Cohen, Xiaoyan Zhang and Spencer C.N. Hagist
Bairong CEO Felix Zhang, in launching his credit scoring start-up that incorporates 74,000 variables per individual, found strong initial success. However, the shifting regulatory environment, growing breadth of competitors, difficulties in retaining top talent, and... View Details
Keywords: Fintech; Big Data; Artificial Intelligence; Credit Scoring; Finance; Credit; Business Startups; AI and Machine Learning; Analytics and Data Science; China
Cohen, Lauren, Xiaoyan Zhang, and Spencer C.N. Hagist. "Bairong and the Promise of Big Data." Harvard Business School Case 221-068, February 2021. (Revised June 2021.)
- September 2023
- Case
Super Quantum: Using Artificial Intelligence to Transform Asset Management (A)
By: Feng Zhu and Kerry Herman
Dr. Zhang, CEO of Super Quantum, an AI-driven hedge fund, is considering an investor’s request to withdraw their funds as the markets experience volatility. Should he pull the investor’s funds? View Details
Keywords: AI and Machine Learning; Volatility; Financial Markets; Investment Funds; Decision Choices and Conditions; Financial Services Industry
Zhu, Feng, and Kerry Herman. "Super Quantum: Using Artificial Intelligence to Transform Asset Management (A)." Harvard Business School Case 624-027, September 2023.
- July 2024
- Article
How Artificial Intelligence Constrains Human Experience
By: A. Valenzuela, S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino and K. Wertenbroch
Many consumption decisions and experiences are digitally mediated. As a consequence, consumer behavior is increasingly the joint product of human psychology and ubiquitous algorithms (Braun et al. 2024; cf. Melumad et al. 2020). The coming of age of Large Language... View Details
Keywords: Large Language Model; User Experience; AI and Machine Learning; Consumer Behavior; Technology Adoption; Risk and Uncertainty; Cost vs Benefits
Valenzuela, A., S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino, and K. Wertenbroch. "How Artificial Intelligence Constrains Human Experience." Journal of the Association for Consumer Research 9, no. 3 (July 2024): 241–256.