Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (1,550) Arrow Down
Filter Results: (1,550) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (3,008)
    • People  (14)
    • News  (646)
    • Research  (1,550)
    • Events  (19)
    • Multimedia  (9)
  • Faculty Publications  (827)

Show Results For

  • All HBS Web  (3,008)
    • People  (14)
    • News  (646)
    • Research  (1,550)
    • Events  (19)
    • Multimedia  (9)
  • Faculty Publications  (827)
← Page 2 of 1,550 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • Article

Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles

By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Keywords: CEOs; Communication Style; Machine Learning; Spoken Communication; Nonverbal Communication; Personal Characteristics; Analysis; Performance
Citation
Find at Harvard
Related
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Strategic Management Journal 40, no. 11 (November 2019): 1705–1732.
  • August 2023
  • Article

Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet models have become more complex and harder to understand. To understand complex models, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use... View Details
Keywords: AI and Machine Learning; Technological Innovation; Technology Adoption
Citation
Read Now
Related
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "Explaining Machine Learning Models with Interactive Natural Language Conversations Using TalkToModel." Nature Machine Intelligence 5, no. 8 (August 2023): 873–883.
  • Working Paper

Visual Uniqueness in Peer-to-Peer Marketplaces: Machine Learning Model Development, Validation, and Application

By: Flora Feng, Charis Li and Shunyuan Zhang
Peer-to-peer (P2P) marketplaces have seen exponential growth in recent years featured by unique offerings from individual providers. Despite the perceived value of uniqueness, scalable quantification of visual uniqueness in P2P platforms like Airbnb has been largely... View Details
Keywords: Peer-to-peer Markets; Marketplace Matching; AI and Machine Learning; Demand and Consumers; Digital Platforms; Marketing
Citation
Read Now
Related
Feng, Flora, Charis Li, and Shunyuan Zhang. "Visual Uniqueness in Peer-to-Peer Marketplaces: Machine Learning Model Development, Validation, and Application." SSRN Working Paper Series, No. 4665286, February 2024.
  • Article

Active World Model Learning with Progress Curiosity

By: Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber and Daniel Yamins
World models are self-supervised predictive models of how the world evolves. Humans learn world models by curiously exploring their environment, in the process acquiring compact abstractions of high bandwidth sensory inputs, the ability to plan across long temporal... View Details
Keywords: World Models; Mathematical Methods
Citation
Read Now
Related
Kim, Kuno, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. "Active World Model Learning with Progress Curiosity." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020).
  • Article

Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications

By: Daniel Elsner, Pouya Aleatrati Khosroshahi, Alan MacCormack and Robert Lagerström
Existing application performance management (APM) solutions lack robust anomaly detection capabilities and root cause analysis techniques that do not require manual efforts and domain knowledge. In this paper, we develop a density-based unsupervised machine learning... View Details
Keywords: Big Data; Data Science And Analytics Management; Governance And Compliance; Organizational Systems And Technology; Anomaly Detection; Application Performance Management; Machine Learning; Enterprise Architecture; Analytics and Data Science
Citation
Read Now
Related
Elsner, Daniel, Pouya Aleatrati Khosroshahi, Alan MacCormack, and Robert Lagerström. "Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications." Proceedings of the Hawaii International Conference on System Sciences 52nd (2019): 5827–5836.
  • October 2017 (Revised April 2018)
  • Case

Improving Worker Safety in the Era of Machine Learning (A)

By: Michael W. Toffel, Dan Levy, Jose Ramon Morales Arilla and Matthew S. Johnson
Managers make predictions all the time: How fast will my markets grow? How much inventory do I need? How intensively should I monitor my suppliers? Which potential customers will be most responsive to a particular marketing campaign? Which job candidates should I... View Details
Keywords: Machine Learning; Policy Implementation; Empirical Research; Inspection; Occupational Safety; Occupational Health; Regulation; Analysis; Forecasting and Prediction; Policy; Operations; Supply Chain Management; Safety; Manufacturing Industry; Construction Industry; United States
Citation
Educators
Purchase
Related
Toffel, Michael W., Dan Levy, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (A)." Harvard Business School Case 618-019, October 2017. (Revised April 2018.)
  • 2020
  • Working Paper

Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective

By: Srikant Datar, Apurv Jain, Charles C.Y. Wang and Siyu Zhang
We provide a comprehensive examination of whether, to what extent, and which accounting variables are useful for improving the predictive accuracy of GDP growth forecasts. We leverage statistical models that accommodate a broad set of (341) variables—outnumbering the... View Details
Keywords: Big Data; Elastic Net; GDP Growth; Machine Learning; Macro Forecasting; Short Fat Data; Accounting; Economic Growth; Forecasting and Prediction; Analytics and Data Science
Citation
SSRN
Read Now
Related
Datar, Srikant, Apurv Jain, Charles C.Y. Wang, and Siyu Zhang. "Is Accounting Useful for Forecasting GDP Growth? A Machine Learning Perspective." Harvard Business School Working Paper, No. 21-113, December 2020.
  • Article

Faithful and Customizable Explanations of Black Box Models

By: Himabindu Lakkaraju, Ece Kamar, Rich Caruana and Jure Leskovec
As predictive models increasingly assist human experts (e.g., doctors) in day-to-day decision making, it is crucial for experts to be able to explore and understand how such models behave in different feature subspaces in order to know if and when to trust them. To... View Details
Keywords: Interpretable Machine Learning; Black Box Models; Decision Making; Framework
Citation
Read Now
Related
Lakkaraju, Himabindu, Ece Kamar, Rich Caruana, and Jure Leskovec. "Faithful and Customizable Explanations of Black Box Models." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2019).
  • August 2024
  • Background Note

Mitigating Climate Change with Machine Learning

By: Michael W. Toffel, Kelsey Carter, Amy Chambers, Avery Park and Susan Pinckney
This note highlights how machine learning is being used to decarbonize (reduce GHG emissions) several key sectors including electricity, transportation, building, industrial processes, and agriculture -- and how machine learning is being used to accelerate efforts to... View Details
Keywords: Climate; Artificial Intelligence; Adaptation; Climate Change; AI and Machine Learning; Innovation and Invention
Citation
Educators
Purchase
Related
Toffel, Michael W., Kelsey Carter, Amy Chambers, Avery Park, and Susan Pinckney. "Mitigating Climate Change with Machine Learning." Harvard Business School Background Note 625-014, August 2024.
  • October 2021
  • Article

Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach

By: Nicolas Padilla and Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Programs; Consumer Behavior; Analysis
Citation
Find at Harvard
Related
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Journal of Marketing Research (JMR) 58, no. 5 (October 2021): 981–1006.
  • Mar 2021
  • Conference Presentation

Descent-to-Delete: Gradient-Based Methods for Machine Unlearning

By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
We study the data deletion problem for convex models. By leveraging techniques from convex optimization and reservoir sampling, we give the first data deletion algorithms that are able to handle an arbitrarily long sequence of adversarial updates while promising both... View Details
Keywords: Machine Learning; Unlearning Algorithm; Mathematical Methods
Citation
Read Now
Related
Neel, Seth, Aaron Leon Roth, and Saeed Sharifi-Malvajerdi. "Descent-to-Delete: Gradient-Based Methods for Machine Unlearning." Paper presented at the 32nd Algorithmic Learning Theory Conference, March 2021.
  • 08 Oct 2018
  • Working Paper Summaries

Developing Theory Using Machine Learning Methods

Keywords: by Prithwiraj Choudhury, Ryan Allen, and Michael G. Endres
  • Research Summary

Making Machine Learning Robust to Adversarial Attacks

By: Himabindu Lakkaraju
The goal of this research is to ensure that machine learning models that we build and deploy are not easily susceptible to attacks by adversarial or malicious entities. View Details
  • 2020
  • Working Paper

Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach

By: Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Customer Value and Value Chain; Consumer Behavior; Analytics and Data Science; Mathematical Methods; Retail Industry
Citation
SSRN
Related
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Harvard Business School Working Paper, No. 19-091, February 2019. (Revised May 2020. Accepted at the Journal of Marketing Research.)
  • February 26, 2024
  • Article

Making Workplaces Safer Through Machine Learning

By: Matthew S. Johnson, David I. Levine and Michael W. Toffel
Machine learning algorithms can dramatically improve regulatory effectiveness. This short article describes the authors' scholarly work that shows how the U.S. Occupational Safety and Health Administration (OSHA) could have reduced nearly twice as many occupational... View Details
Keywords: Government Experimentation; Auditing; Inspection; Evaluation; Process Improvement; Government Administration; AI and Machine Learning; Safety; Governing Rules, Regulations, and Reforms
Citation
Read Now
Related
Johnson, Matthew S., David I. Levine, and Michael W. Toffel. "Making Workplaces Safer Through Machine Learning." Regulatory Review (February 26, 2024).
  • Teaching Interest

Interpretability and Explainability in Machine Learning

By: Himabindu Lakkaraju

As machine learning models are increasingly being employed to aid decision makers in high-stakes settings such as healthcare and criminal justice, it is important to ensure that the decision makers correctly understand and consequent trust the functionality of these... View Details

  • 02 Aug 2017
  • Working Paper Summaries

Machine Learning Methods for Strategy Research

Keywords: by Mike Horia Teodorescu
  • Article

Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
The most prevalent notions of fairness in machine learning are statistical definitions: they fix a small collection of pre-defined groups, and then ask for parity of some statistic of the classifier (like classification rate or false positive rate) across these groups.... View Details
Keywords: Machine Learning; Algorithms; Fairness; Mathematical Methods
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness." Proceedings of the International Conference on Machine Learning (ICML) 35th (2018).
  • December 2023
  • Article

Self-Orienting in Human and Machine Learning

By: Julian De Freitas, Ahmet Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum and T. Ullman
A current proposal for a computational notion of self is a representation of one’s body in a specific time and place, which includes the recognition of that representation as the agent. This turns self-representation into a process of self-orientation, a challenging... View Details
Keywords: AI and Machine Learning; Behavior; Learning
Citation
Find at Harvard
Read Now
Purchase
Related
De Freitas, Julian, Ahmet Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum, and T. Ullman. "Self-Orienting in Human and Machine Learning." Nature Human Behaviour 7, no. 12 (December 2023): 2126–2139.
  • 25 Oct 2017
  • Research & Ideas

Will Machine Learning Make You a Better Manager?

Credit: PhonlamaiPhoto Thirty years ago, the idea of a machine learning on its own would have stoked the worst kind of sci-fi nightmares about robots taking over the planet. These days, View Details
Keywords: by Michael Blanding; Information Technology
  • ←
  • 2
  • 3
  • …
  • 77
  • 78
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.