Filter Results:
(73)
Show Results For
- All HBS Web (73)
- Faculty Publications (51)
Show Results For
- All HBS Web (73)
- Faculty Publications (51)
- 2025
- Article
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics 43, no. 1 (2025): 256–268.
- 2023
- Article
Experimental Evaluation of Individualized Treatment Rules
By: Kosuke Imai and Michael Lingzhi Li
The increasing availability of individual-level data has led to numerous applications of individualized (or personalized) treatment rules (ITRs). Policy makers often wish to empirically evaluate ITRs and compare their relative performance before implementing them in a... View Details
Keywords: Causal Inference; Heterogeneous Treatment Effects; Precision Medicine; Uplift Modeling; Analytics and Data Science; AI and Machine Learning
Imai, Kosuke, and Michael Lingzhi Li. "Experimental Evaluation of Individualized Treatment Rules." Journal of the American Statistical Association 118, no. 541 (2023): 242–256.
- Article
Your Visual System Provides All the Information You Need to Make Moral Judgments about Generic Visual Events
By: Julian De Freitas and George A. Alvarez
To what extent are people's moral judgments susceptible to subtle factors of which they are unaware? Here we show that we can change people’s moral judgments outside of their awareness by subtly biasing perceived causality. Specifically, we used subtle visual... View Details
De Freitas, Julian, and George A. Alvarez. "Your Visual System Provides All the Information You Need to Make Moral Judgments about Generic Visual Events." Cognition 178 (September 2018): 133–146.
- April 2020
- Article
Designs for Estimating the Treatment Effect in Networks with Interference
By: Ravi Jagadeesan, Natesh S. Pillai and Alexander Volfovsky
In this paper, we introduce new, easily implementable designs for drawing causal inference from randomized experiments on networks with interference. Inspired by the idea of matching in observational studies, we introduce the notion of considering a treatment... View Details
Keywords: Experimental Design; Network Inference; Neyman Estimator; Symmetric Interference Model; Homophily
Jagadeesan, Ravi, Natesh S. Pillai, and Alexander Volfovsky. "Designs for Estimating the Treatment Effect in Networks with Interference." Annals of Statistics 48, no. 2 (April 2020): 679–712.
- 2023
- Working Paper
Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection
By: Edward McFowland III, Sriram Somanchi and Daniel B. Neill
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention’s effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides... View Details
Keywords: Causal Inference; Program Evaluation; Algorithms; Distributional Average Treatment Effect; Treatment Effect Subset Scan; Heterogeneous Treatment Effects
McFowland III, Edward, Sriram Somanchi, and Daniel B. Neill. "Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection." Working Paper, 2023.
- 2021
- Working Paper
Population Interference in Panel Experiments
By: Iavor I Bojinov, Kevin Wu Han and Guillaume Basse
The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in... View Details
Bojinov, Iavor I., Kevin Wu Han, and Guillaume Basse. "Population Interference in Panel Experiments." Harvard Business School Working Paper, No. 21-100, March 2021.
- March 2016
- Case
Evive Health and Workplace Influenza Vaccinations
By: John Beshears
Evive Health is a company that manages communication campaigns on behalf of health insurance plans and large employers. Using big data techniques and insights from behavioral economics, Evive deploys targeted and effective messages that improve individuals' health... View Details
Keywords: Vaccination; Influenza; Flu Shot; Preventive Care; Health Care; Behavioral Economics; Choice Architecture; Nudge; Experimental Design; Randomized Controlled Trial; RCT; Causal Inference; Consumer Behavior; Health Care and Treatment; Health Testing and Trials; Communication Strategy; Health Industry
Beshears, John. "Evive Health and Workplace Influenza Vaccinations." Harvard Business School Case 916-044, March 2016.
- March 2016 (Revised March 2022)
- Teaching Note
Evive Health and Workplace Influenza Vaccinations
By: John Beshears
Evive Health is a company that manages communication campaigns on behalf of health insurance plans and large employers. Using big data techniques and insights from behavioral economics, Evive deploys targeted and effective messages that improve individuals' health... View Details
Keywords: Vaccination; Influenza; Flu Shot; Preventive Care; Health Care; Behavioral Economics; Choice Architecture; Nudge; Experimental Design; Randomized Controlled Trial; RCT; Causal Inference; Health Care and Treatment; Insurance; Health; Consumer Behavior; Health Testing and Trials; Communication Strategy; Insurance Industry; Health Industry
- Article
Optimality Bias in Moral Judgment
By: Julian De Freitas and Samuel G.B. Johnson
We often make decisions with incomplete knowledge of their consequences. Might people nonetheless expect others to make optimal choices, despite this ignorance? Here, we show that people are sensitive to moral optimality: that people hold moral agents accountable... View Details
Keywords: Moral Judgment; Lay Decision Theory; Theory Of Mind; Causal Attribution; Moral Sensibility; Decision Making
De Freitas, Julian, and Samuel G.B. Johnson. "Optimality Bias in Moral Judgment." Journal of Experimental Social Psychology 79 (November 2018): 149–163.
- Awards
Runner-Up for Best Paper Award, INFORMS Workshop on Data Science, 2018
Runner Up for the 2018 Best Paper Award at the INFORMS Workshop on Data Science for "Using Data-Mined Variables in Causal Inference Tasks: A Random Forest Approach to the Measurement Error Problem" with Mochen Yang, Gordon Burtch, and Gediminas Adomavicius. View Details
Ta-Wei Huang
Ta-Wei (David) Huang is a PhD candidate in Quantitative Marketing at Harvard Business School. His research integrates causal inference and machine learning to address methodological challenges and unintended consequences in targeting, personalization, and online... View Details
- Article
How Much Should We Trust Staggered Difference-In-Differences Estimates?
By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
We explain when and how staggered difference-in-differences regression estimators, commonly applied to assess the impact of policy changes, are biased. These biases are likely to be relevant for a large portion of research settings in finance, accounting, and law that... View Details
Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" Journal of Financial Economics 144, no. 2 (May 2022): 370–395. (Editor's Choice, May 2022; Jensen Prize, First Place, June 2023.)
- 2024
- Working Paper
Personalization and Targeting: How to Experiment, Learn & Optimize
By: Aurelie Lemmens, Jason M.T. Roos, Sebastian Gabel, Eva Ascarza, Hernan Bruno, Elea McDonnell Feit, Brett Gordon, Ayelet Israeli, Carl F. Mela and Oded Netzer
Personalization has become the heartbeat of modern marketing. Advances in causal inference and machine learning enable companies to understand how the same marketing action can impact the choices of individual customers differently. This article provides an academic... View Details
Keywords: Personalization; Targeting; Experiments; Observational Studies; Policy Implementation; Policy Evaluation; Customization and Personalization; Marketing Strategy; AI and Machine Learning
Lemmens, Aurelie, Jason M.T. Roos, Sebastian Gabel, Eva Ascarza, Hernan Bruno, Elea McDonnell Feit, Brett Gordon, Ayelet Israeli, Carl F. Mela, and Oded Netzer. "Personalization and Targeting: How to Experiment, Learn & Optimize." Working Paper, June 2024.
- 2012
- Chapter
Mental Health in the Aftermath of Conflict
By: Quy-Toan Do and Lakshmi Iyer
We survey the recent literature on the mental health effects of conflict. We highlight the methodological challenges faced in this literature, which include the lack of validated mental health scales in a survey context, the difficulties in measuring individual... View Details
Keywords: Conflict of Interests; Measurement and Metrics; Surveys; Analytics and Data Science; Ethnicity; War; Health Disorders; Body of Literature; Problems and Challenges; Bosnia and Hercegovina
Do, Quy-Toan, and Lakshmi Iyer. "Mental Health in the Aftermath of Conflict." In Oxford Handbook of the Economics of Peace and Conflict, edited by Michelle Garfinkel and Stergios Skaperdas. Oxford University Press, 2012.
- 2009
- Working Paper
Mental Health in the Aftermath of Conflict
By: Quy-Toan Do and Lakshmi Iyer
We survey the recent literature on the mental health effects of conflict. We highlight the methodological challenges faced in this literature, which include the lack of validated mental health scales in a survey context, the difficulties in measuring individual... View Details
Keywords: Ethnicity; War; Health Disorders; Policy; Health Care and Treatment; Conflict and Resolution; Bosnia and Hercegovina
Do, Quy-Toan, and Lakshmi Iyer. "Mental Health in the Aftermath of Conflict." Harvard Business School Working Paper, No. 10-040, November 2009.
Iavor I. Bojinov
Iavor Bojinov is an Assistant Professor of Business Administration and the Richard Hodgson Fellow at Harvard Business School. He is the co-PI of the AI and Data Science Operations Lab and a faculty affiliate in the Department of Statistics at Harvard University and... View Details
- December 2022
- Article
Fostering Perceptions of Authenticity via Sensitive Self-Disclosure
By: Li Jiang, Leslie K. John, Reihane Boghrati and Maryam Kouchaki
Leaders’ perceived authenticity—the sense that leaders are acting in accordance with their “true self”—is associated with positive outcomes for both employees and organizations alike. How might leaders foster this impression? We show that sensitive self-disclosure, in... View Details
Keywords: Authenticity; Weaknesses; Self-disclosure; Leaders; Impression Management; Leadership Style; Motivation and Incentives
Jiang, Li, Leslie K. John, Reihane Boghrati, and Maryam Kouchaki. "Fostering Perceptions of Authenticity via Sensitive Self-Disclosure." Journal of Experimental Psychology: Applied 28, no. 4 (December 2022): 898–915.
- Teaching Interest
Overview
Paul is primarily interested in teaching data science to management students through the case method. This includes technical topics (programming and statistics) as well as higher-level management issues (digital transformation, data governance, etc.) As a research... View Details
Keywords: A/B Testing; AI; AI Algorithms; AI Creativity; Algorithm; Algorithm Bias; Algorithmic Bias; Algorithmic Fairness; Algorithms; Analytics; Application Program Interface; Artificial Intelligence; Causality; Causal Inference; Computing; Computers; Data Analysis; Data Analytics; Data Architecture; Data As A Service; Data Centers; Data Governance; Data Labeling; Data Management; Data Manipulation; Data Mining; Data Ownership; Data Privacy; Data Protection; Data Science; Data Science And Analytics Management; Data Scientists; Data Security; Data Sharing; Data Strategy; Data Visualization; Database; Data-driven Decision-making; Data-driven Management; Data-driven Operations; Datathon; Economics Of AI; Economics Of Innovation; Economics Of Information System; Economics Of Science; Forecast; Forecast Accuracy; Forecasting; Forecasting And Prediction; Information Technology; Machine Learning; Machine Learning Models; Prediction; Prediction Error; Predictive Analytics; Predictive Models; Analysis; AI and Machine Learning; Analytics and Data Science; Applications and Software; Digital Transformation; Information Management; Digital Strategy; Technology Adoption
- December 2017
- Article
Discordant vs. Harmonious Selves: The Effects of Identity Conflict and Enhancement on Sales Performance in Employee-Customer Interactions
By: Lakshmi Ramarajan, Nancy Rothbard and Steffanie Wilk
Across multiple studies, we examine how identity conflict and enhancement within people affect performance in tasks that involve interactions between people through two mechanisms: role-immersion, operationalized as intrinsic motivation, and role-taking,... View Details
Ramarajan, Lakshmi, Nancy Rothbard, and Steffanie Wilk. "Discordant vs. Harmonious Selves: The Effects of Identity Conflict and Enhancement on Sales Performance in Employee-Customer Interactions." Academy of Management Journal 60, no. 6 (December 2017): 2208–2238.
- March–April 2023
- Article
Pricing for Heterogeneous Products: Analytics for Ticket Reselling
By: Michael Alley, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li and Georgia Perakis
Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including endogeneity, heterogeneity in... View Details
Keywords: Price; Demand and Consumers; AI and Machine Learning; Investment Return; Entertainment and Recreation Industry; Sports Industry
Alley, Michael, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li, and Georgia Perakis. "Pricing for Heterogeneous Products: Analytics for Ticket Reselling." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 409–426.