Filter Results:
(356)
Show Results For
- All HBS Web
(1,005)
- Faculty Publications (356)
Show Results For
- All HBS Web
(1,005)
- Faculty Publications (356)
←
Page 18 of 356
Results
- Research Summary
Making Machine Learning Models Interpretable
I work on developing various tools and methodologies which can help decision makers (e.g., doctors, managers) to better understand the predictions of machine learning models. View Details
- Research Summary
Making Machine Learning Robust to Adversarial Attacks
The goal of this research is to ensure that machine learning models that we build and deploy are not easily susceptible to attacks by adversarial or malicious entities. View Details
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia. Review of Marketing Research. Emerald Publishing Limited, forthcoming.
- Forthcoming
- Article
Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing
By: Kirk Bansak and Elisabeth Paulson
This study proposes two new dynamic assignment algorithms to match refugees and asylum seekers to geographic localities within a host country. The first, currently implemented in a multi-year pilot in Switzerland, seeks to maximize the average predicted employment... View Details
Bansak, Kirk, and Elisabeth Paulson. "Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing." Operations Research (forthcoming). (Pre-published online March 25, 2024.)
- Teaching Interest
Overview
Public entrepreneurship, entrepreneurship, leadership, business and government, cities, artificial intelligence View Details
- Research Summary
Overview
Prithwiraj (Raj) Choudhury is the Lumry Family Associate Professor at the Harvard Business School. He was an Assistant Professor at Wharton prior to joining Harvard. His research is focused on studying the Future of Work, especially the changing Geography of Work. In... View Details
- Research Summary
Overview
By: Isamar Troncoso
Professor Troncoso's research explores problems related to digital marketplaces and AI applications in marketing, and combines toolkits from econometrics, causal inference, and machine learning. She has studied how different platform design choices can lead to... View Details
- Research Summary
Overview
I develop machine learning tools and techniques which enable human decision makers to make better decisions. More specifically, my research addresses the following fundamental questions pertaining to human and algorithmic decision-making:
1. How to build... View Details
1. How to build... View Details
- Research Summary
Overview
By: Shunyuan Zhang
Professor Zhang uses machine learning to address marketing problems that have arisen within the nascent sharing economy. She conducts rigorous analyses of structured and unstructured data generated by new sharing economy platforms to address important issues emerging... View Details
- Research Summary
Overview
By: Srikant M. Datar
Professor Datar has several research and course development interests. His initial areas of research interest were in cost management and management control, strategy implementation and governance. Over the last few years his areas of interest are management education,... View Details
- Research Summary
Overview
Engaged with field work in East Africa, South Asia, and in several large hybrid organizations in the United States, Professor Whillans places a focus on exploring questions with strong theoretical motivation in the social psychological literature and relevant... View Details
- Research Summary
Overview
Professor Ferreira's research primarily focuses on how retailers can use algorithms to make better revenue management decisions, including pricing, product display, and assortment planning. In the retail industry, anticipating consumer demand is arguably one of the... View Details
- Forthcoming
- Article
Reducing Prejudice with Counter-stereotypical AI
By: Erik Hermann, Julian De Freitas and Stefano Puntoni
Based on a review of relevant literature, we propose that the proliferation of AI with human-like and social features presents an unprecedented opportunity to address the underlying cognitive and affective drivers of prejudice. An approach informed by the psychology of... View Details
- Forthcoming
- Article
Serving with a Smile on Airbnb: Analyzing the Economic Returns and Behavioral Underpinnings of the Host’s Smile
By: Shunyuan Zhang, Elizabeth Friedman, Kannan Srinivasan, Ravi Dhar and Xupin Zhang
Non-informational cues, such as facial expressions, can significantly influence judgments and interpersonal impressions. While past research has explored how smiling affects business outcomes in offline or in-store contexts, relatively less is known about how smiling... View Details
Keywords: Sharing Economy; Airbnb; Image Feature Extraction; Machine Learning; Facial Expressions; Prejudice and Bias; Nonverbal Communication; E-commerce; Consumer Behavior; Perception
Zhang, Shunyuan, Elizabeth Friedman, Kannan Srinivasan, Ravi Dhar, and Xupin Zhang. "Serving with a Smile on Airbnb: Analyzing the Economic Returns and Behavioral Underpinnings of the Host’s Smile." Journal of Consumer Research (forthcoming). (Pre-published online August 9, 2024.)
- Forthcoming
- Article
Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments
By: Kosuke Imai and Michael Lingzhi Li
Researchers are increasingly turning to machine learning (ML) algorithms to investigate causal heterogeneity in randomized experiments. Despite their promise, ML algorithms may fail to accurately ascertain heterogeneous treatment effects under practical settings with... View Details
Imai, Kosuke, and Michael Lingzhi Li. "Statistical Inference for Heterogeneous Treatment Effects Discovered by Generic Machine Learning in Randomized Experiments." Journal of Business & Economic Statistics (forthcoming). (Pre-published online July 8, 2024.)
- Research Summary
Understanding the Limitations of Model Explanations
The goal of this research is to understand how adversaries can exploit various algorithms used for explaining complex machine learning models with an intention to mislead end users. For instance, can adversaries trick these algorithms into masking their racial and... View Details
- ←
- 18