Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (429) Arrow Down
Filter Results: (429) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,089)
    • Faculty Publications  (429)

    Show Results For

    • All HBS Web  (1,089)
      • Faculty Publications  (429)

      Supervised Machine LearningRemove Supervised Machine Learning →

      ← Page 17 of 429 Results →

      Are you looking for?

      →Search All HBS Web
      • September 2020 (Revised March 2022)
      • Case

      JOANN: Joannalytics Inventory Allocation Tool

      By: Kris Ferreira and Srikanth Jagabathula
      Michael Joyce, Vice President of Inventory Management at JOANN, championed an effort to develop and implement an inventory allocation analytics tool that used advanced analytics to predict in-season demand of seasonal items for each of JOANN’s nearly 900 stores and... View Details
      Keywords: Analytics; Machine Learning; Optimization; Inventory Management; Mathematical Methods; Decision Making; Operations; Supply Chain Management; Resource Allocation; Distribution; Technology Adoption; Applications and Software; Change Management; Fashion Industry; Consumer Products Industry; Retail Industry; United States; Ohio
      Citation
      Educators
      Purchase
      Related
      Ferreira, Kris, and Srikanth Jagabathula. "JOANN: Joannalytics Inventory Allocation Tool." Harvard Business School Case 621-055, September 2020. (Revised March 2022.)
      • September 2020
      • Article

      Creativity, Artificial Intelligence, and a World of Surprises

      By: Teresa M. Amabile
      In recent years, progress has been made toward AI Creativity, which I define as the production of highly novel, yet appropriate, ideas, problem solutions, or other outputs by autonomous machines. I argue that organizational researchers of creativity and innovation... View Details
      Keywords: Artificial Intelligence; AI Creativity; Computer Science; Organizational Behavior; Psychology; Creativity; Technological Innovation; AI and Machine Learning
      Citation
      Find at Harvard
      Register to Read
      Related
      Amabile, Teresa M. "Creativity, Artificial Intelligence, and a World of Surprises." Academy of Management Discoveries 6, no. 3 (September 2020): 351–354.
      • August 2020 (Revised September 2020)
      • Technical Note

      Assessing Prediction Accuracy of Machine Learning Models

      By: Michael W. Toffel, Natalie Epstein, Kris Ferreira and Yael Grushka-Cockayne
      The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools... View Details
      Keywords: Machine Learning; Statistics; Econometric Analyses; Experimental Methods; Data Analysis; Data Analytics; Forecasting and Prediction; Analytics and Data Science; Analysis; Mathematical Methods
      Citation
      Educators
      Purchase
      Related
      Toffel, Michael W., Natalie Epstein, Kris Ferreira, and Yael Grushka-Cockayne. "Assessing Prediction Accuracy of Machine Learning Models." Harvard Business School Technical Note 621-045, August 2020. (Revised September 2020.)
      • 2021
      • Working Paper

      Time and the Value of Data

      By: Ehsan Valavi, Joel Hestness, Newsha Ardalani and Marco Iansiti

      Managers often believe that collecting more data will continually improve the accuracy of their machine learning models. However, we argue in this paper that when data lose relevance over time, it may be optimal to collect a limited amount of recent data instead of... View Details

      Keywords: Economics Of AI; Machine Learning; Non-stationarity; Perishability; Value Depreciation; Analytics and Data Science; Value
      Citation
      SSRN
      Read Now
      Related
      Valavi, Ehsan, Joel Hestness, Newsha Ardalani, and Marco Iansiti. "Time and the Value of Data." Harvard Business School Working Paper, No. 21-016, August 2020. (Revised November 2021.)
      • August 2020
      • Article

      Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation

      By: Prithwiraj Choudhury, Evan Starr and Rajshree Agarwal
      The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic... View Details
      Keywords: Machine Learning; Bias; Human Capital; Management; Strategy
      Citation
      Find at Harvard
      Read Now
      Related
      Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal. "Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation." Strategic Management Journal 41, no. 8 (August 2020): 1381–1411.
      • 2020
      • Book

      Work, Mate, Marry, Love: How Machines Shape Our Human Destiny

      By: Debora L. Spar
      Covering a time frame that ranges from 8000 BC to the present, and drawing upon both Marxist and feminist theories, the book argues that nearly all the decisions we make in our most intimate lives—whom to marry, how to have children, how to have sex, how to think about... View Details
      Keywords: Innovation; Family; Women; Reproduction; Artificial Intelligence; Robots; Gender; Demography; History; Innovation and Invention; Relationships; Society; Information Technology; AI and Machine Learning; Biotechnology Industry; Computer Industry; Health Industry; Information Technology Industry; Manufacturing Industry; Technology Industry; Africa; Asia; Europe; Latin America; North and Central America
      Citation
      Purchase
      Related
      Spar, Debora L. Work, Mate, Marry, Love: How Machines Shape Our Human Destiny. New York: Farrar, Straus and Giroux, 2020.
      • Article

      Oracle Efficient Private Non-Convex Optimization

      By: Seth Neel, Aaron Leon Roth, Giuseppe Vietri and Zhiwei Steven Wu
      One of the most effective algorithms for differentially private learning and optimization is objective perturbation. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it.... View Details
      Keywords: Machine Learning; Algorithms; Objective Perturbation; Mathematical Methods
      Citation
      Read Now
      Related
      Neel, Seth, Aaron Leon Roth, Giuseppe Vietri, and Zhiwei Steven Wu. "Oracle Efficient Private Non-Convex Optimization." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020).
      • 2021
      • Conference Presentation

      An Algorithmic Framework for Fairness Elicitation

      By: Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton and Zhiwei Steven Wu
      We consider settings in which the right notion of fairness is not captured by simple mathematical definitions (such as equality of error rates across groups), but might be more complex and nuanced and thus require elicitation from individual or collective stakeholders.... View Details
      Keywords: Algorithmic Fairness; Machine Learning; Fairness; Framework; Mathematical Methods
      Citation
      Read Now
      Related
      Jung, Christopher, Michael J. Kearns, Seth Neel, Aaron Leon Roth, Logan Stapleton, and Zhiwei Steven Wu. "An Algorithmic Framework for Fairness Elicitation." Paper presented at the 2nd Symposium on Foundations of Responsible Computing (FORC), 2021.
      • Article

      Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs

      By: Michael G. Endres, Florian Hillen, Marios Salloumis, Ahmad R. Sedaghat, Stefan M. Niehues, Olivia Quatela, Henning Hanken, Ralf Smeets, Benedicta Beck-Broichsitter, Carsten Rendenbach, Karim R. Lakhani, Max Helland and Robert A. Gaudin
      Periapical radiolucencies, which can be detected on panoramic radiographs, are one of the most common radiographic findings in dentistry and have a differential diagnosis including infections, granuloma, cysts, and tumors. In this study, we seek to investigate the... View Details
      Keywords: Artificial Intelligence; Diagnosis; Computer-assisted; Image Interpretation; Machine Learning; Radiography; Panoramic Radiograph; AI and Machine Learning
      Citation
      Read Now
      Related
      Endres, Michael G., Florian Hillen, Marios Salloumis, Ahmad R. Sedaghat, Stefan M. Niehues, Olivia Quatela, Henning Hanken, Ralf Smeets, Benedicta Beck-Broichsitter, Carsten Rendenbach, Karim R. Lakhani, Max Helland, and Robert A. Gaudin. "Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs." Diagnostics 10, no. 6 (June 2020).
      • May 2020
      • Case

      Numenta in 2020: The Future of AI

      By: David B. Yoffie, Cameron Armstrong, Mei Tao and Marta Zwierz
      In 2020, Numenta’s co-founder, Jeff Hawkins, completed his pathbreaking research on artificial intelligence. His co-founder and CEO, Donna Dubinsky, had to find a business model to monetize the technology. This case explores the challenges of building a business... View Details
      Keywords: Artificial Intelligence; Monetization; Information Technology; Strategy; Intellectual Property; Business Model; AI and Machine Learning; Technology Industry
      Citation
      Educators
      Purchase
      Related
      Yoffie, David B., Cameron Armstrong, Mei Tao, and Marta Zwierz. "Numenta in 2020: The Future of AI." Harvard Business School Case 720-463, May 2020.
      • 2020
      • Article

      Public Sentiment and the Price of Corporate Sustainability

      By: George Serafeim
      Combining corporate sustainability performance scores based on environmental, social, and governance (ESG) data with big data measuring public sentiment about a company’s sustainability performance, I find that the valuation premium paid for companies with strong... View Details
      Keywords: Sustainability; ESG; ESG (Environmental, Social, Governance) Performance; Investment Management; Investment Strategy; Big Data; Machine Learning; Environment; Environmental Sustainability; Corporate Governance; Performance; Asset Pricing; Investment; Management; Strategy; Human Capital; Public Opinion; Value; Analytics and Data Science
      Citation
      SSRN
      Find at Harvard
      Related
      Serafeim, George. "Public Sentiment and the Price of Corporate Sustainability." Financial Analysts Journal 76, no. 2 (2020): 26–46.
      • April 29, 2020
      • Article

      The Case for AI Insurance

      By: Ram Shankar Siva Kumar and Frank Nagle
      When organizations place machine learning systems at the center of their businesses, they introduce the risk of failures that could lead to a data breach, brand damage, property damage, business interruption, and in some cases, bodily harm. Even when companies are... View Details
      Keywords: Artificial Intelligence; Machine Learning; Internet and the Web; Safety; Insurance; AI and Machine Learning; Cybersecurity
      Citation
      Find at Harvard
      Register to Read
      Related
      Kumar, Ram Shankar Siva, and Frank Nagle. "The Case for AI Insurance." Harvard Business Review Digital Articles (April 29, 2020).
      • 26 Apr 2020
      • Other Presentation

      Towards Modeling the Variability of Human Attention

      By: Kuno Kim, Megumi Sano, Julian De Freitas, Daniel Yamins and Nick Haber
      Children exhibit extraordinary exploratory behaviors hypothesized to contribute to the building of models of their world. Harnessing this capacity in artificial systems promises not only more flexible technology but also cognitive models of the developmental processes... View Details
      Keywords: Exploratory Learning Behaviors; Modeling; Artificial Intelligence; AI and Machine Learning
      Citation
      Read Now
      Related
      Kim, Kuno, Megumi Sano, Julian De Freitas, Daniel Yamins, and Nick Haber. "Towards Modeling the Variability of Human Attention." In Bridging AI and Cognitive Science (BAICS) Workshop. 8th International Conference on Learning Representations (ICLR), April 26, 2020.
      • April 2020
      • Article

      CEO Behavior and Firm Performance

      By: Oriana Bandiera, Stephen Hansen, Andrea Prat and Raffaella Sadun
      We measure the behavior of 1,114 CEOs in six countries parsing granular CEO diary data through an unsupervised machine learning algorithm. The algorithm uncovers two distinct behavioral types: "leaders" and "managers." Leaders focus on multi-function, high-level... View Details
      Keywords: CEOs; Management; Behavior; Organizations; Performance; Analysis
      Citation
      Find at Harvard
      Read Now
      Purchase
      Related
      Bandiera, Oriana, Stephen Hansen, Andrea Prat, and Raffaella Sadun. "CEO Behavior and Firm Performance." Journal of Political Economy 128, no. 4 (April 2020): 1325–1369.
      • Mar 2020
      • Conference Presentation

      A New Analysis of Differential Privacy's Generalization Guarantees

      By: Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Moshe Shenfeld
      We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and... View Details
      Keywords: Machine Learning; Transfer Theorem; Mathematical Methods
      Citation
      Read Now
      Related
      Jung, Christopher, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. "A New Analysis of Differential Privacy's Generalization Guarantees." Paper presented at the 11th Innovations in Theoretical Computer Science Conference, Seattle, March 2020.
      • 2020
      • Working Paper

      Design in the Age of Artificial Intelligence

      By: Roberto Verganti, Luca Vendraminelli and Marco Iansiti
      Artificial Intelligence (AI) is affecting the scenario in which innovation takes place. What are the implications for our understanding of design? Is AI just another digital technology that, akin to many others, will not significantly question what we know about... View Details
      Keywords: Artificial Intelligence; Design Thinking; Technological Innovation; Design; Change; Theory; AI and Machine Learning
      Citation
      Read Now
      Related
      Verganti, Roberto, Luca Vendraminelli, and Marco Iansiti. "Design in the Age of Artificial Intelligence." Harvard Business School Working Paper, No. 20-091, February 2020.
      • February 2020
      • Technical Note

      Talent Management and the Future of Work

      By: William R. Kerr and Gorick Ng
      The nature of work is changing—and it is changing rapidly. Few days go by without industry giants such as Amazon and AT&T announcing plans to invest billions of dollars towards retraining nearly half of their respective workforces for jobs of the future. What changes... View Details
      Keywords: Human Resource Management; Human Capital Development; Human Resource Practices; Talent; Talent Acquisition; Talent Development; Talent Development And Retention; Talent Management; Talent Retention; Labor Flows; Labor Management; Labor Market; Strategy Development; Strategy Management; Strategy Execution; Strategy And Execution; Strategic Change; Transformations; Organization; Organization Alignment; Organization Design; Organizational Adaptation; Organizational Effectiveness; Management Challenges; Management Of Business And Political Risk; Change Leadership; Future Of Work; Future; Skills Gap; Skills Development; Skills; Offshoring And Outsourcing; Investment; Capital Allocation; Work; Work Culture; Work Force Management; Work/life Balance; Work/family Balance; Work-family Boundary Management; Workers; Worker Productivity; Worker Performance; Work Engagement; Work Environment; Work Environments; Productivity; Organization Culture; Soft Skills; Technology Management; Technological Change; Technological Change: Choices And Consequences; Technology Diffusion; Disruptive Technology; Global Business; Global; Workplace; Workplace Context; Workplace Culture; Workplace Wellness; Collaboration; Competencies; Productivity Gains; Digital; Digital Transition; Competitive Dynamics; Competitiveness; Competitive Strategy; Data Analytics; Data; Data Management; Data Strategy; Data Protection; Aging Society; Diversity; Diversity Management; Millennials; Communication Complexity; Communication Technologies; International Business; Work Sharing; Global Competitiveness; Global Corporate Cultures; Intellectual Property; Intellectual Property Management; Intellectual Property Protection; Intellectual Capital And Property Issues; Globalization Of Supply Chain; Inequality; Recruiting; Hiring; Hiring Of Employees; Training; Job Cuts And Outsourcing; Job Performance; Job Search; Job Design; Job Satisfaction; Jobs; Employee Engagement; Employee Attitude; Employee Benefits; Employee Compensation; Employee Fairness; Employee Relationship Management; Employee Retention; Employee Selection; Employee Motivation; Employee Feedback; Employee Coordination; Employee Performance Management; Employee Socialization; Process Improvement; Application Performance Management; Stigma; Institutional Change; Candidates; Digital Enterprise; Cultural Adaptation; Cultural Change; Cultural Diversity; Cultural Context; Cultural Strategies; Cultural Psychology; Cultural Reform; Performance; Performance Effectiveness; Performance Management; Performance Evaluation; Performance Appraisal; Performance Feedback; Performance Measurement; Performance Metrics; Performance Measures; Performance Efficiency; Efficiency; Performance Analysis; Performance Appraisals; Performance Improvement; Automation; Artificial Intelligence; Technology Companies; Managerial Processes; Skilled Migration; Assessment; Human Resources; Management; Human Capital; Talent and Talent Management; Retention; Demographics; Labor; Strategy; Change; Change Management; Transformation; Organizational Change and Adaptation; Organizational Culture; Working Conditions; Information Technology; Technology Adoption; Disruption; Economy; Competition; Globalization; AI and Machine Learning; Digital Transformation
      Citation
      Educators
      Purchase
      Related
      Kerr, William R., and Gorick Ng. "Talent Management and the Future of Work." Harvard Business School Technical Note 820-084, February 2020.
      • January–February 2020
      • Article

      Competing in the Age of AI

      By: Marco Iansiti and Karim R. Lakhani
      Today’s markets are being reshaped by a new kind of firm—one in which artificial intelligence (AI) runs the show. This cohort includes giants like Google, Facebook, and Alibaba, and growing businesses such as Wayfair and Ocado. Every time we use their services, the... View Details
      Keywords: Artificial Intelligence; Algorithms; Technological Innovation; Business Model; Competition; Competitive Strategy; AI and Machine Learning
      Citation
      Find at Harvard
      Register to Read
      Related
      Iansiti, Marco, and Karim R. Lakhani. "Competing in the Age of AI." Harvard Business Review 98, no. 1 (January–February 2020): 60–67.
      • Article

      Fake AI People Won't Fix Online Dating

      By: Scott Duke Kominers
      Computer-generated images may inspire even more distrust and surely won’t lead to the love of a lifetime. View Details
      Keywords: Artificial Intelligence; Dating Services; Internet and the Web; Ethics; AI and Machine Learning
      Citation
      Read Now
      Related
      Kominers, Scott Duke. "Fake AI People Won't Fix Online Dating." Bloomberg Opinion (January 16, 2020).
      • 2020
      • Book

      Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World

      By: Marco Iansiti and Karim R. Lakhani
      In industry after industry, data, analytics, and AI-driven processes are transforming the nature of work. While we often still treat AI as the domain of a specific skill, business function, or sector, we have entered a new era in which AI is challenging the very... View Details
      Keywords: Artificial Intelligence; Technological Innovation; Change; Competition; Strategy; Leadership; Business Processes; Organizational Change and Adaptation; AI and Machine Learning
      Citation
      Find at Harvard
      Purchase
      Related
      Iansiti, Marco, and Karim R. Lakhani. Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World. Boston: Harvard Business Review Press, 2020.
      • ←
      • 17
      • 18
      • …
      • 21
      • 22
      • →

      Are you looking for?

      →Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College.