Filter Results:
(946)
Show Results For
- All HBS Web
(946)
- People (1)
- News (155)
- Research (626)
- Events (13)
- Multimedia (3)
- Faculty Publications (534)
Show Results For
- All HBS Web
(946)
- People (1)
- News (155)
- Research (626)
- Events (13)
- Multimedia (3)
- Faculty Publications (534)
- 2023
- Working Paper
The Customer Journey as a Source of Information
By: Nicolas Padilla, Eva Ascarza and Oded Netzer
In the face of heightened data privacy concerns and diminishing third-party data access,
firms are placing increased emphasis on first-party data (1PD) for marketing decisions.
However, in environments with infrequent purchases, reliance on past purchases 1PD... View Details
Keywords: Customer Journey; Privacy; Consumer Behavior; Analytics and Data Science; AI and Machine Learning; Customer Focus and Relationships
Padilla, Nicolas, Eva Ascarza, and Oded Netzer. "The Customer Journey as a Source of Information." Harvard Business School Working Paper, No. 24-035, October 2023. (Revised October 2023.)
- July 2023 (Revised July 2023)
- Background Note
Generative AI Value Chain
By: Andy Wu and Matt Higgins
Generative AI refers to a type of artificial intelligence (AI) that can create new content (e.g., text, image, or audio) in response to a prompt from a user. ChatGPT, Bard, and Claude are examples of text generating AIs, and DALL-E, Midjourney, and Stable Diffusion are... View Details
Keywords: AI; Artificial Intelligence; Model; Hardware; Data Centers; AI and Machine Learning; Applications and Software; Analytics and Data Science; Value
Wu, Andy, and Matt Higgins. "Generative AI Value Chain." Harvard Business School Background Note 724-355, July 2023. (Revised July 2023.)
- Research Summary
Overview
By: Shunyuan Zhang
Professor Zhang uses machine learning to address marketing problems that have arisen within the nascent sharing economy. She conducts rigorous analyses of structured and unstructured data generated by new sharing economy platforms to address important issues emerging... View Details
- September 15, 2021
- Article
Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map
By: Andrea Blasco, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani and Aravind Subramanian
A recurring problem in biomedical research is how to isolate signals of distinct populations (cell types, tissues, and genes) from composite measures obtained by a single analyte or sensor. Existing computational deconvolution approaches work well in many specific... View Details
Keywords: Deconvolution; Methods; Open Innovation Competition; Genomics; Research; Innovation and Invention
Blasco, Andrea, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani, and Aravind Subramanian. "Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map." Bioinformatics 37, no. 18 (September 15, 2021).
- Research Summary
Overview
Ms. Fedyk's main research interests lie at the intersection of asset pricing and behavioral finance, with a particular focus on information and belief formation. Her job market paper is part of a broader research agenda on the way in which information is incorporated... View Details
- 2018
- Working Paper
Some Facts of High-Tech Patenting
By: Michael Webb, Nick Short, Nicholas Bloom and Josh Lerner
Patenting in software, cloud computing, and artificial intelligence has grown rapidly in recent years. Such patents are acquired primarily by large U.S. technology firms such as IBM, Microsoft, Google, and HP, as well as by Japanese multinationals such as Sony, Canon,... View Details
Webb, Michael, Nick Short, Nicholas Bloom, and Josh Lerner. "Some Facts of High-Tech Patenting." Harvard Business School Working Paper, No. 19-014, August 2018. (NBER Working Paper Series, No. 24793, July 2018.)
- May 2024
- Article
Financial Innovation in the 21st Century: Evidence from U.S. Patents
By: Josh Lerner, Amit Seru, Nick Short and Yuan Sun
We develop a unique dataset of 24 thousand U.S. finance patents granted over the last two decades to explore the evolution and production of financial innovation. We use machine learning to identify the financial patents and extensively audit the results to ensure... View Details
Keywords: Banking; Investment Banks; Information Technology; Regulation; Patents; Innovation and Invention; Trends
Lerner, Josh, Amit Seru, Nick Short, and Yuan Sun. "Financial Innovation in the 21st Century: Evidence from U.S. Patents." Journal of Political Economy 132, no. 5 (May 2024): 1391–1449.
- April 2021
- Article
Work-From-Anywhere: The Productivity Effects of Geographical Flexibility
By: Prithwiraj Choudhury, Cirrus Foroughi and Barbara Larson
An emerging form of remote work allows employees to work-from-anywhere, so that the worker can choose to live in a preferred geographic location. While traditional work-from-home (WFH) programs offer the worker temporal flexibility, work-from-anywhere (WFA) programs... View Details
Keywords: Geographic Flexibility; Work-from-anywhere; Remote Work; Telecommuting; Geographic Mobility; USPTO; Employees; Geographic Location; Performance Productivity
Choudhury, Prithwiraj, Cirrus Foroughi, and Barbara Larson. "Work-From-Anywhere: The Productivity Effects of Geographical Flexibility." Strategic Management Journal 42, no. 4 (April 2021): 655–683.
Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development
Predictive model development is understudied despite its importance to modern businesses. Although prior discussions highlight advances in methods (along the dimensions of data, computing power, and algorithms) as the primary driver of model quality, the value of... View Details
- May 2021 (Revised February 2024)
- Teaching Note
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Ayelet Israeli and Jill Avery
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
- March 1, 2022
- Article
Widespread Use of National Academies Consensus Reports by the American Public
By: Diana Hicks, Matteo Zullo, Ameet Doshi and Omar Isaac Asensio
In seeking to understand how to protect the public information sphere from corruption, researchers understandably focus on dysfunction. However, parts of the public information ecosystem function very well, and understanding this as well will help in protecting and... View Details
Keywords: Reports; Surveys; AI and Machine Learning; Knowledge Dissemination; Knowledge Use and Leverage
Hicks, Diana, Matteo Zullo, Ameet Doshi, and Omar Isaac Asensio. "Widespread Use of National Academies Consensus Reports by the American Public." e2107760119. Proceedings of the National Academy of Sciences 119, no. 9 (March 1, 2022).
- January 2021
- Case
Anodot: Autonomous Business Monitoring
By: Antonio Moreno and Danielle Golan
Autonomous business monitoring platform Anodot leveraged machine learning to provide real-time alerts regarding business anomalies. Anodot’s solution was used in various industries in order to primarily monitor business health, such as revenue and payments, product... View Details
Keywords: Digital Platforms; Internet and the Web; Knowledge Sharing; Information Management; Sales; Value Creation; Product Positioning; Israel
Moreno, Antonio, and Danielle Golan. "Anodot: Autonomous Business Monitoring." Harvard Business School Case 621-084, January 2021.
Linda A. Hill
Linda A. Hill is the Wallace Brett Donham Professor of Business Administration at the Harvard Business School and Faculty Chair of the Leadership Initiative. Hill is regarded as one of the top experts on leadership and innovation. Hill is... View Details
- July 2024
- Technical Note
What Is AI?
By: Michael Parzen and Jo Ellery
This note discusses definitions of artificial intelligence and covers the broad types of learning used in training AI, as well as explaining in detail how neural networks are built, trained, and used. View Details
Keywords: AI and Machine Learning
Parzen, Michael, and Jo Ellery. "What Is AI?" Harvard Business School Technical Note 625-010, July 2024.
- 2023
- Article
Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability
By: Usha Bhalla, Suraj Srinivas and Himabindu Lakkaraju
With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to... View Details
Bhalla, Usha, Suraj Srinivas, and Himabindu Lakkaraju. "Verifiable Feature Attributions: A Bridge between Post Hoc Explainability and Inherent Interpretability." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- 2021
- Article
ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation
By: Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott and Daniel L.K. Yamins
We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical simulation. TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments. Unique properties include: real-time... View Details
Keywords: Artificial Intelligence; Platform; Interactive Physical Simulation; Virtual Environment; Multi-modal; AI and Machine Learning
Gan, Chuang, Jeremy Schwartz, Seth Alter, Damian Mrowca, Martin Schrimpf, James Traer, Julian De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis, Kevin Feigelis, Daniel M. Bear, Dan Gutfreund, David Cox, Antonio Torralba, James J. DiCarlo, Joshua B. Tenenbaum, Josh H. McDermott, and Daniel L.K. Yamins. "ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 35th (2021).
- 2023
- Article
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means... View Details
Pawelczyk, Martin, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju. "Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse." Proceedings of the International Conference on Learning Representations (ICLR) (2023).
- 15 Oct 2001
- Op-Ed
Lessons from the Rubble
Pundits and investors spoke giddily of the end of national borders, of markets that spanned the globe and replaced the hefty weight of machines and plants with ephemeral bits of information. This may be true. We do have global markets and... View Details
Keywords: by Debora L. Spar
- 2023
- Article
Experimental Evaluation of Individualized Treatment Rules
By: Kosuke Imai and Michael Lingzhi Li
The increasing availability of individual-level data has led to numerous applications of individualized (or personalized) treatment rules (ITRs). Policy makers often wish to empirically evaluate ITRs and compare their relative performance before implementing them in a... View Details
Keywords: Causal Inference; Heterogeneous Treatment Effects; Precision Medicine; Uplift Modeling; Analytics and Data Science; AI and Machine Learning
Imai, Kosuke, and Michael Lingzhi Li. "Experimental Evaluation of Individualized Treatment Rules." Journal of the American Statistical Association 118, no. 541 (2023): 242–256.