Filter Results:
(646)
Show Results For
- All HBS Web
(646)
- News (145)
- Research (421)
- Events (15)
- Multimedia (11)
- Faculty Publications (295)
Show Results For
- All HBS Web
(646)
- News (145)
- Research (421)
- Events (15)
- Multimedia (11)
- Faculty Publications (295)
- September 24, 2021
- Article
A Labor Movement for the Platform Economy
By: Li Jin, Scott Duke Kominers and Lila Shroff
Platforms are fundamentally changing the contract between workers and companies—and the workers and creatives that create value for platform companies, and rely on platforms for their livelihoods, often have little power when it comes to getting their concerns... View Details
Keywords: Gig Workers; Decentralized Collective Action; Internet and the Web; Labor; Labor and Management Relations; Digital Platforms
Jin, Li, Scott Duke Kominers, and Lila Shroff. "A Labor Movement for the Platform Economy." Harvard Business Review Digital Articles (September 24, 2021).
- 10 Jun 2017
- News
How big data helped secure Emmanuel Macron’s astounding victory
- March 2021
- Case
VideaHealth: Building the AI Factory
By: Karim R. Lakhani and Amy Klopfenstein
Florian Hillen, co-founder and CEO of VideaHealth, a startup that used artificial intelligence (AI) to detect dental conditions on x-rays, spent the early years of his company laying the groundwork for an AI factory. A process for quickly building and iterating on new... View Details
Keywords: Artificial Intelligence; Innovation and Invention; Disruptive Innovation; Technological Innovation; Information Technology; Applications and Software; Technology Adoption; Digital Platforms; Entrepreneurship; AI and Machine Learning; Technology Industry; Medical Devices and Supplies Industry; North and Central America; United States; Massachusetts; Cambridge
Lakhani, Karim R., and Amy Klopfenstein. "VideaHealth: Building the AI Factory." Harvard Business School Case 621-021, March 2021.
Eliminating unintended bias in personalized policies using Bias Eliminating Adapted Trees (BEAT) - PNAS
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those... View Details
- July 2023
- Case
DayTwo: Going to Market with Gut Microbiome (Abridged)
By: Ayelet Israeli
DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals. After a first year of trial rollout in... View Details
Keywords: Business Startups; AI and Machine Learning; Nutrition; Market Entry and Exit; Product Marketing; Distribution Channels
Israeli, Ayelet. "DayTwo: Going to Market with Gut Microbiome (Abridged)." Harvard Business School Case 524-015, July 2023.
- April 2008
- Article
The Survey of Industrial R&D—Patent Database Link Project
By: William R. Kerr and Shihe Fu
This paper details the construction of a firm-year panel dataset combining the NBER Patent Dataset with the Survey of Industrial R&D conducted by the Census Bureau and National Science Foundation. The dataset constitutes a platform that offers an unprecedented view of... View Details
Keywords: Analytics and Data Science; Patents; Surveys; Research and Development; Innovation and Invention; Performance Productivity; Projects; Management Practices and Processes; Management Analysis, Tools, and Techniques
Kerr, William R., and Shihe Fu. "The Survey of Industrial R&D—Patent Database Link Project." Journal of Technology Transfer 33, no. 2 (April 2008): 173–186.
- 2024
- Working Paper
The Cram Method for Efficient Simultaneous Learning and Evaluation
By: Zeyang Jia, Kosuke Imai and Michael Lingzhi Li
We introduce the "cram" method, a general and efficient approach to simultaneous learning and evaluation using a generic machine learning (ML) algorithm. In a single pass of batched data, the proposed method repeatedly trains an ML algorithm and tests its empirical... View Details
Keywords: AI and Machine Learning
Jia, Zeyang, Kosuke Imai, and Michael Lingzhi Li. "The Cram Method for Efficient Simultaneous Learning and Evaluation." Working Paper, March 2024.
- 20 Apr 2021
- News
10 Things Your Artificial Intelligence Initiative Needs to Succeed
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for iBuyer 2
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for iBuyer 2." Harvard Business School Exercise 923-020, October 2022.
- November 2020
- Teaching Note
DayTwo: Going to Market with Gut Microbiome
By: Ayelet Israeli
Teaching Note for HBS Case No. 519-010. DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals.... View Details
Keywords: Start-up Growth; Startup; Positioning; Targeting; Go To Market Strategy; B2B Vs. B2C; B2B2C; Health & Wellness; AI; Machine Learning; Female Ceo; Female Protagonist; Science-based; Science And Technology Studies; Ecommerce; Applications; DTC; Direct To Consumer Marketing; US Health Care; "USA,"; Innovation; Pricing; Business Growth; Segmentation; Distribution Channels; Growth and Development Strategy; Business Startups; Science-Based Business; Health; Innovation and Invention; Marketing; Information Technology; Business Growth and Maturation; E-commerce; Applications and Software; Health Industry; Technology Industry; Insurance Industry; Information Technology Industry; Food and Beverage Industry; Israel; United States
- May 2023
- Technical Note
Dynamic Pricing: Timing is Everything
By: Elie Ofek
This note provides a comprehensive exposition to the topic of dynamic pricing (whereby the fee customers are charged is time-dependent). It covers the motivation for firms to engage in dynamic pricing, provides a typology of the main formats dynamic pricing can take,... View Details
Ofek, Elie. "Dynamic Pricing: Timing is Everything." Harvard Business School Technical Note 523-110, May 2023.
- Article
Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy
By: Edward Glaeser, Andrew Hillis, Scott Duke Kominers and Michael Luca
The proliferation of big data makes it possible to better target city services like hygiene inspections, but city governments rarely have the in-house talent needed for developing prediction algorithms. Cities could hire consultants, but a cheaper alternative is to... View Details
Keywords: User-generated Content; Operations; Tournaments; Policy-making; Machine Learning; Online Platforms; Analytics and Data Science; Mathematical Methods; City; Infrastructure; Business Processes; Government and Politics
Glaeser, Edward, Andrew Hillis, Scott Duke Kominers, and Michael Luca. "Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy." American Economic Review: Papers and Proceedings 106, no. 5 (May 2016): 114–118.
- Article
Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM
By: Katrina Ligett, Seth Neel, Aaron Leon Roth, Bo Waggoner and Steven Wu
Traditional approaches to differential privacy assume a fixed privacy requirement ϵ for a computation, and attempt to maximize the accuracy of the computation subject to the privacy constraint. As differential privacy is increasingly deployed in practical settings, it... View Details
Ligett, Katrina, Seth Neel, Aaron Leon Roth, Bo Waggoner, and Steven Wu. "Accuracy First: Selecting a Differential Privacy Level for Accuracy-Constrained ERM." Journal of Privacy and Confidentiality 9, no. 2 (2019).
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 1
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Keywords: Data-driven Decision-making; Decisions; Negotiation; Bids and Bidding; Valuation; Consumer Behavior; Real Estate Industry
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 1." Harvard Business School Exercise 923-016, October 2022.
- 2023
- Working Paper
PRIMO: Private Regression in Multiple Outcomes
By: Seth Neel
We introduce a new differentially private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired the common situation where a data analyst wants to perform a set of l regressions while preserving privacy, where the covariates... View Details
Neel, Seth. "PRIMO: Private Regression in Multiple Outcomes." Working Paper, March 2023.
- October 2022
- Exercise
Shanty Real Estate: Confidential Information for Homebuyer 3
By: Michael Luca, Jesse M. Shapiro and Nathan Sun
Shanty is a simulation in which students inhabit the role of either a traditional home buyer or an iBuyer, both bidding on the same condo. The traditional home buyer has access to a “comp sheet” of similar properties that have recently sold, and has done a walkthrough.... View Details
Luca, Michael, Jesse M. Shapiro, and Nathan Sun. "Shanty Real Estate: Confidential Information for Homebuyer 3." Harvard Business School Exercise 923-018, October 2022.
- 20 Apr 2020
- News
Digital Transformation: Business Leaders Still Struggling to Cope
- November 2015 (Revised May 2016)
- Case
Aspiring Minds
By: Karim R. Lakhani, Marco Iansiti and Christine Snively
By 2015, India-based employment assessment and certification provider Aspiring Minds had helped facilitate over 300,000 job matches through its assessment tools. Aspiring Minds' flagship product, the Aspiring Minds Computer Adaptive Test (AMCAT), used machine learning... View Details
Keywords: Information Technology; Strategy; Higher Education; Technological Innovation; Employment; Technology Industry; India; China
Lakhani, Karim R., Marco Iansiti, and Christine Snively. "Aspiring Minds." Harvard Business School Case 616-013, November 2015. (Revised May 2016.)