Filter Results:
(420)
Show Results For
- All HBS Web
(999)
- Faculty Publications (420)
Show Results For
- All HBS Web
(999)
- Faculty Publications (420)
- May 2022 (Revised July 2022)
- Case
The Voice War Continues: Hey Google vs. Alexa vs. Siri in 2022
By: David B. Yoffie and Daniel Fisher
In 2022, after five years of pursuing a new "AI-first" strategy, Google had captured a sizeable share of the American and global markets for voice assistants. Google Assistant was used by hundreds of millions of users around the world, but Amazon retained the largest... View Details
Keywords: Strategy; Artificial Intelligence; Deep Learning; Voice Assistants; Smart Home; Market Share; Globalized Markets and Industries; Competitive Strategy; Digital Platforms; AI and Machine Learning; Technology Industry; United States
Yoffie, David B., and Daniel Fisher. "The Voice War Continues: Hey Google vs. Alexa vs. Siri in 2022." Harvard Business School Case 722-462, May 2022. (Revised July 2022.)
- May 2022
- Article
Coins for Bombs: The Predictive Ability of On-Chain Transfers for Terrorist Attacks
By: Dan Amiram, Evgeny Lyandres and Daniel Rabetti
This study examines whether we can learn from the behavior of blockchain-based transfers to predict the financing of terrorist attacks. We exploit blockchain transaction transparency to map millions of transfers for hundreds of large on-chain service providers. The... View Details
Keywords: Blockchain; Bitcoin; Accounting; AI and Machine Learning; National Security; Governing Rules, Regulations, and Reforms
Amiram, Dan, Evgeny Lyandres, and Daniel Rabetti. "Coins for Bombs: The Predictive Ability of On-Chain Transfers for Terrorist Attacks." Journal of Accounting Research 60, no. 2 (May 2022): 427–466.
- Article
Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI
By: Tsedal Neeley and Paul Leonardi
Learning new technological skills is essential for digital transformation. But it is not enough. Employees must be motivated to use their skills to create new opportunities. They need a digital mindset: a set of attitudes and behaviors that enable people and... View Details
Keywords: Machine Learning; AI; Information Technology; Transformation; Competency and Skills; Employees; Technology Adoption; Leading Change; Digital Transformation
Neeley, Tsedal, and Paul Leonardi. "Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI." S22032. Harvard Business Review 100, no. 3 (May–June 2022): 50–55.
- 2022
- Article
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.
By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a... View Details
Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- 2022
- Book
The Digital Mindset: What It Really Takes to Thrive in the Age of Data, Algorithms, and AI
By: Paul Leonardi and Tsedal Neeley
The pressure to "be digital" has never been greater, but you can meet the challenge.
The digital revolution is here, changing how work gets done, how industries are structured, and how people from all walks of life work, behave, and relate to each other. To thrive... View Details
Keywords: Digital; Artificial Intelligence; Big Data; Digital Transformation; Technological Innovation; Transformation; Learning; Competency and Skills
Leonardi, Paul, and Tsedal Neeley. The Digital Mindset: What It Really Takes to Thrive in the Age of Data, Algorithms, and AI. Boston, MA: Harvard Business Review Press, 2022.
- April–June 2022
- Other Article
Commentary on 'Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters'
There has been a substantial discussion in various methodological and applied literatures around causal inference; especially in the use of machine learning and statistical models to understand heterogeneity in treatment effects and to make optimal decision... View Details
Keywords: Causal Inference; Treatment Effect Estimation; Treatment Assignment Policy; Human-in-the-loop; Decision Making; Fairness
McFowland III, Edward. "Commentary on 'Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters'." INFORMS Journal on Data Science 1, no. 1 (April–June 2022): 21–22.
- March 2022 (Revised January 2025)
- Technical Note
Prediction & Machine Learning
This note provides an introduction to machine learning for an introductory data science course. The note begins with a description of supervised, unsupervised, and reinforcement learning. Then, the note provides a brief explanation of the difference between traditional... View Details
Keywords: Machine Learning; Data Science; Learning; Analytics and Data Science; Performance Evaluation; AI and Machine Learning
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Prediction & Machine Learning." Harvard Business School Technical Note 622-101, March 2022. (Revised January 2025.)
- March 2022
- Case
Unilever: Remote Work in Manufacturing
By: Prithwiraj Choudhury and Susie L. Ma
In December 2021, Unilever—one of the world’s largest producers of consumer goods—was in the midst of a pilot project to digitize its manufacturing facilities and enable remote work for factory employees. This was possible because of an earlier project to retrofit a... View Details
Keywords: Change; Globalization; Information Technology; Technology Adoption; Human Resources; Jobs and Positions; Operations; Education; Training; Manufacturing Industry
Choudhury, Prithwiraj, and Susie L. Ma. "Unilever: Remote Work in Manufacturing." Harvard Business School Case 622-030, March 2022.
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- March 2022
- Article
Winner Takes All? Tech Clusters, Population Centers, and the Spatial Transformation of U.S. Invention
By: Brad Chattergoon and William R. Kerr
U.S. invention has become increasingly concentrated around major tech centers since the 1970s, with implications for how much cities across the country share in concomitant local benefits. Is invention becoming a winner-takes-all race? We explore the rising spatial... View Details
Keywords: Clusters; Invention; Agglomeration; Artificial Intelligence; Innovation and Invention; Patents; Applications and Software; Industry Clusters; AI and Machine Learning
Chattergoon, Brad, and William R. Kerr. "Winner Takes All? Tech Clusters, Population Centers, and the Spatial Transformation of U.S. Invention." Art. 104418. Research Policy 51, no. 2 (March 2022).
- 2022
- Working Paper
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how... View Details
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
- February 2022 (Revised September 2022)
- Case
InstaDeep: AI Innovation Born in Africa (A)
By: Shikhar Ghosh and Esel Çekin
Karim Beguir and Zohra Slim were the co-founders of InstaDeep, a deep tech startup focusing on artificial intelligence (AI) solutions. Instadeep was one of the few companies globally that were partnering with DeepMind, an AI subsidiary of Google [Alphabet Inc.].... View Details
Keywords: AI; Artificial Intelligence; Entrepreneurship; Operations; Business Subsidiaries; Brands and Branding; Innovation and Invention; Growth and Development Strategy; AI and Machine Learning; Technology Industry; Africa
Ghosh, Shikhar, and Esel Çekin. "InstaDeep: AI Innovation Born in Africa (A)." Harvard Business School Case 822-104, February 2022. (Revised September 2022.)
- February 2022 (Revised July 2022)
- Supplement
InstaDeep: AI Innovation Born in Africa (B)
By: Shikhar Ghosh and Esel Çekin
Karim Beguir and Zohra Slim were the co-founders of InstaDeep, a deep tech startup focusing on artificial intelligence (AI) solutions. Instadeep was one of the few companies globally that were partnering with DeepMind, an AI subsidiary of Google [Alphabet Inc.].... View Details
Keywords: AI; Artificial Intelligence; Entrepreneurship; Operations; Business Subsidiaries; Brands and Branding; Innovation and Invention; Growth and Development Strategy; AI and Machine Learning; Technology Industry; Africa
Ghosh, Shikhar, and Esel Çekin. "InstaDeep: AI Innovation Born in Africa (B)." Harvard Business School Supplement 822-105, February 2022. (Revised July 2022.)
- January–February 2022
- Article
Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion
By: Ryan Allen and Prithwiraj Choudhury
How does a knowledge worker’s level of domain experience affect their algorithm-augmented work performance? We propose and test theoretical predictions that domain experience has countervailing effects on algorithm-augmented performance: on one hand, domain experience... View Details
Keywords: Automation; Domain Experience; Algorithmic Aversion; Experts; Algorithms; Machine Learning; Future Of Work; Employees; Experience and Expertise; Decision Making; Performance
Allen, Ryan, and Prithwiraj Choudhury. "Algorithm-Augmented Work and Domain Experience: The Countervailing Forces of Ability and Aversion." Organization Science 33, no. 1 (January–February 2022): 149–169. ("Best PhD Student Paper" at SMS conference 2020.)
- February 2022 (Revised November 2022)
- Case
Nuritas
By: Mitchell Weiss, Satish Tadikonda, Vincent Dessain and Emer Moloney
Nora Khaldi had built a technology “to unlock the power of nature” in the service of extending human lifespan and improving health, and now in April 2020 was debating telling her Board of Directors she wanted to put on ice some of her discoveries. Nuritas, the company... View Details
Keywords: Cash Burn; Cash Flow Analysis; Pharmaceutical Companies; Founder; Artificial Intelligence; AI; Entrepreneurship; Health Testing and Trials; Health Care and Treatment; Decision Making; Market Entry and Exit; AI and Machine Learning; Pharmaceutical Industry
Weiss, Mitchell, Satish Tadikonda, Vincent Dessain, and Emer Moloney. "Nuritas." Harvard Business School Case 822-080, February 2022. (Revised November 2022.)
- January 2022
- Article
Artificial Intelligence, Data-Driven Learning, and the Decentralized Structure of Platform Ecosystems
By: David R. Clough and Andy Wu
Gregory, Henfridsson, Kaganer, and Kyriakou (2020) highlight the important role of data and AI as strategic resources that platforms may use to enhance user value. However, their article overlooks a significant conceptual distinction: the installed base of... View Details
Keywords: Artificial Intelligence; Data Strategy; Ecosystem; Value Capture; Digital Platforms; Analytics and Data Science; Strategy; Learning; Value Creation; AI and Machine Learning; Technology Industry; Information Technology Industry; Video Game Industry; Advertising Industry
Clough, David R., and Andy Wu. "Artificial Intelligence, Data-Driven Learning, and the Decentralized Structure of Platform Ecosystems." Academy of Management Review 47, no. 1 (January 2022): 184–189.
- 2022
- Working Paper
Rethinking Explainability as a Dialogue: A Practitioner's Perspective
By: Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan and Sameer Singh
As practitioners increasingly deploy machine learning models in critical domains such as healthcare, finance, and policy, it becomes vital to ensure that domain experts function effectively alongside these models. Explainability is one way to bridge the gap between... View Details
Keywords: Natural Language Conversations; AI and Machine Learning; Experience and Expertise; Interactive Communication; Business and Stakeholder Relations
Lakkaraju, Himabindu, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer Singh. "Rethinking Explainability as a Dialogue: A Practitioner's Perspective." Working Paper, 2022.
- 2022
- Working Paper
TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations
By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public... View Details
Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
- Article
Adaptive Machine Unlearning
By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees... View Details
Gupta, Varun, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. "Adaptive Machine Unlearning." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).