Filter Results:
(418)
Show Results For
- All HBS Web
(670)
- News (145)
- Research (418)
- Events (16)
- Multimedia (11)
- Faculty Publications (295)
Show Results For
- All HBS Web
(670)
- News (145)
- Research (418)
- Events (16)
- Multimedia (11)
- Faculty Publications (295)
Sort by
- June 2020
- Article
Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure
By: Omar Isaac Asensio, Kevin Alvarez, Arielle Dror, Emerson Wenzel, Catharina Hollauer and Sooji Ha
By displacing gasoline and diesel fuels, electric cars and fleets reduce emissions from the transportation sector, thus offering important public health benefits. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to... View Details
Keywords: Environmental Sustainability; Transportation; Infrastructure; Behavior; AI and Machine Learning; Demand and Consumers
Asensio, Omar Isaac, Kevin Alvarez, Arielle Dror, Emerson Wenzel, Catharina Hollauer, and Sooji Ha. "Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure." Nature Sustainability 3, no. 6 (June 2020): 463–471.
- 2017
- Working Paper
The Need for Speed: Effects of Uncertainty Reduction in Patenting
By: Mike Horia Teodorescu
Patents are essential in commerce to establish property rights for ideas and to give equal protection to firms that develop new technologies. Young firms especially depend on the protection of intellectual property to bring a product from concept to market. However,... View Details
- July 2011
- Article
Kidney Paired Donation
By: C. Bradley Wallis, Kannan P. Samy, Alvin E. Roth and Michael A. Rees
Kidney paired donation (KPD) was first suggested in 1986, but it was not until 2000 when the first paired donation transplant was performed in the U.S. In the past decade, KPD has become the fastest growing source of transplantable kidneys, overcoming the barrier faced... View Details
Keywords: Philanthropy and Charitable Giving; Health Care and Treatment; Growth and Development Strategy; Success; Problems and Challenges; Programs; System; United States
Wallis, C. Bradley, Kannan P. Samy, Alvin E. Roth, and Michael A. Rees. "Kidney Paired Donation." Nephrology, Dialysis, Transplantation 26, no. 7 (July 2011): 2091–2099.
- 09 Jan 2024
- In Practice
Harnessing AI: What Businesses Need to Know in ChatGPT’s Second Year
includes addressing algorithmic biases, safeguarding privacy, ensuring security and copyright protection, as well as promoting transparency, fairness, and interpretability. Deploying mechanisms for responsible AI will be central to these... View Details
- October 2017 (Revised April 2018)
- Case
Improving Worker Safety in the Era of Machine Learning (A)
By: Michael W. Toffel, Dan Levy, Jose Ramon Morales Arilla and Matthew S. Johnson
Managers make predictions all the time: How fast will my markets grow? How much inventory do I need? How intensively should I monitor my suppliers? Which potential customers will be most responsive to a particular marketing campaign? Which job candidates should I... View Details
Keywords: Machine Learning; Policy Implementation; Empirical Research; Inspection; Occupational Safety; Occupational Health; Regulation; Analysis; Forecasting and Prediction; Policy; Operations; Supply Chain Management; Safety; Manufacturing Industry; Construction Industry; United States
Toffel, Michael W., Dan Levy, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (A)." Harvard Business School Case 618-019, October 2017. (Revised April 2018.)
- 29 Jun 2011
- Working Paper Summaries
Better-reply Dynamics in Deferred Acceptance Games
Keywords: by Guillaume Haeringer & Hanna Halaburda
- 2024
- Article
Learning Under Random Distributional Shifts
By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the U.S.
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can... View Details
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Learning Under Random Distributional Shifts." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 27th (2024).
- January 2024 (Revised February 2024)
- Course Overview Note
Managing Customers for Growth: Course Overview for Students
By: Eva Ascarza
Managing Customers for Growth (MCG) is a 14-session elective course for second-year MBA students at Harvard Business School. It is designed for business professionals engaged in roles centered on customer-driven growth activities. The course explores the dynamics of... View Details
Keywords: Customer Relationship Management; Decision Making; Analytics and Data Science; Growth Management; Telecommunications Industry; Technology Industry; Financial Services Industry; Education Industry; Travel Industry
Ascarza, Eva. "Managing Customers for Growth: Course Overview for Students." Harvard Business School Course Overview Note 524-032, January 2024. (Revised February 2024.)
- Article
Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses
By: Kaivalya Rawal and Himabindu Lakkaraju
As predictive models are increasingly being deployed in high-stakes decision-making, there has been a lot of interest in developing algorithms which can provide recourses to affected individuals. While developing such tools is important, it is even more critical to... View Details
Rawal, Kaivalya, and Himabindu Lakkaraju. "Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses." Advances in Neural Information Processing Systems (NeurIPS) 33 (2020).
- March 2011 (Revised December 2012)
- Case
Demand Media
By: John Deighton and Leora Kornfeld
Google search had helped Demand Media grow to be a $1.9 billion online publisher. Then, social media and smartphone apps began to change the way people navigated the Internet. How should Demand Media respond? The business ran on a radically new model in which a stable... View Details
Keywords: Business Model; Information Publishing; Consumer Behavior; Customization and Personalization; Internet and the Web; Publishing Industry
Deighton, John, and Leora Kornfeld. "Demand Media." Harvard Business School Case 511-043, March 2011. (Revised December 2012.) (request a courtesy copy.)
- 22 May 2024
- HBS Case
Banned or Not, TikTok Is a Force Companies Can’t Afford to Ignore
Practice at HBS who authored the case study with HBS researcher Shweta Bagai. Businesses need to “understand how it is that they’re doing what they’re doing so that they can incorporate the power of algorithmic technologies into their... View Details
- 2016
- Working Paper
Foreign Competition and Domestic Innovation: Evidence from U.S. Patents
By: David Autor, David Dorn, Gordon H. Hanson, Pian Shu and Gary Pisano
Manufacturing is the locus of U.S. innovation, accounting for more than three quarters of U.S. corporate patents. The rise of import competition from China has represented a major competitive shock to the sector, which in theory could benefit or stifle innovation. In... View Details
Keywords: Patents; Competition; System Shocks; Trade; Innovation and Invention; Manufacturing Industry; China; United States
Autor, David, David Dorn, Gordon H. Hanson, Pian Shu, and Gary Pisano. "Foreign Competition and Domestic Innovation: Evidence from U.S. Patents." NBER Working Paper Series, No. 22879, December 2016.
- 2023
- Article
Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset
By: Junling Liu, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu and Michael Lingzhi Li
Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam,... View Details
Keywords: Large Language Model; AI and Machine Learning; Analytics and Data Science; Health Industry
Liu, Junling, Peilin Zhou, Yining Hua, Dading Chong, Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu You, Zhenhua Guo, Lei Zhu, and Michael Lingzhi Li. "Benchmarking Large Language Models on CMExam—A Comprehensive Chinese Medical Exam Dataset." Conference on Neural Information Processing Systems (NeurIPS), Datasets and Benchmarks Track 36 (2023).
- December 2022 (Revised June 2023)
- Case
Hacking the U.S. Election: Russia's Misinformation Campaign
By: Shikhar Ghosh
The case discusses the relatively low technology approach used by Russia to influence the U.S. Presidential Election in 2016. Although political parties manipulating the media was not a new phenomenon, the Russians ran a broad, well-financed, and sophisticated social... View Details
Keywords: Political Elections; International Relations; Social Media; Power and Influence; Information; Russia; United States
Ghosh, Shikhar. "Hacking the U.S. Election: Russia's Misinformation Campaign." Harvard Business School Case 823-043, December 2022. (Revised June 2023.)
- March 2022
- Article
Where to Locate COVID-19 Mass Vaccination Facilities?
By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new... View Details
Keywords: Vaccines; COVID-19; Health Care and Treatment; Health Pandemics; Performance Effectiveness; Analytics and Data Science; Mathematical Methods
Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
- 2022
- Article
Towards Robust Off-Policy Evaluation via Human Inputs
By: Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez and Himabindu Lakkaraju
Off-policy Evaluation (OPE) methods are crucial tools for evaluating policies in high-stakes domains such as healthcare, where direct deployment is often infeasible, unethical, or expensive. When deployment environments are expected to undergo changes (that is, dataset... View Details
Singh, Harvineet, Shalmali Joshi, Finale Doshi-Velez, and Himabindu Lakkaraju. "Towards Robust Off-Policy Evaluation via Human Inputs." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 686–699.
- July 2024
- Article
How Artificial Intelligence Constrains Human Experience
By: A. Valenzuela, S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino and K. Wertenbroch
Many consumption decisions and experiences are digitally mediated. As a consequence, consumer behavior is increasingly the joint product of human psychology and ubiquitous algorithms (Braun et al. 2024; cf. Melumad et al. 2020). The coming of age of Large Language... View Details
Keywords: Large Language Model; User Experience; AI and Machine Learning; Consumer Behavior; Technology Adoption; Risk and Uncertainty; Cost vs Benefits
Valenzuela, A., S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino, and K. Wertenbroch. "How Artificial Intelligence Constrains Human Experience." Journal of the Association for Consumer Research 9, no. 3 (July 2024): 241–256.
- December 2016
- Article
Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud
By: Michael Luca and Georgios Zervas
Consumer reviews are now part of everyday decision making. Yet, the credibility of these reviews is fundamentally undermined when businesses commit review fraud, creating fake reviews for themselves or their competitors. We investigate the economic incentives to commit... View Details
Luca, Michael, and Georgios Zervas. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud." Management Science 62, no. 12 (December 2016): 3412–3427.
- 2015
- Working Paper
Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud
By: Michael Luca and Georgios Zervas
Consumer reviews are now part of everyday decision-making. Yet, the credibility of these reviews is fundamentally undermined when businesses commit review fraud, creating fake reviews for themselves or their competitors. We investigate the economic incentives to commit... View Details
Keywords: Information; Competition; Internet and the Web; Ethics; Reputation; Social and Collaborative Networks; Retail Industry; Food and Beverage Industry
Luca, Michael, and Georgios Zervas. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud." Working Paper. (May 2015. Revise and resubmit, Management Science.)