Filter Results:
(5)
Show Results For
- All HBS Web
(43)
- Faculty Publications (5)
Show Results For
- All HBS Web
(43)
- Faculty Publications (5)
Page 1 of 5
Results
- 2021
- Working Paper
Toward Automated Discovery of Novel Anomalous Patterns
By: Edward McFowland III and Daniel B. Neill
- January 2021
- Article
Machine Learning for Pattern Discovery in Management Research
By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
- 2020
- Working Paper
Machine Learning for Pattern Discovery in Management Research
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used as an observation for further inductive or abductive research, but should not be treated as the result of a... View Details
Keywords: Machine Learning; Theory Building; Induction; Decision Trees; Random Forests; K-nearest Neighbors; Neural Network; P-hacking; Analytics and Data Science; Analysis
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Harvard Business School Working Paper, No. 19-032, September 2018. (Revised June 2020.)
- 2023
- Working Paper
Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection
By: Edward McFowland III, Sriram Somanchi and Daniel B. Neill
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention’s effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides... View Details
Keywords: Causal Inference; Program Evaluation; Algorithms; Distributional Average Treatment Effect; Treatment Effect Subset Scan; Heterogeneous Treatment Effects
McFowland III, Edward, Sriram Somanchi, and Daniel B. Neill. "Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection." Working Paper, 2023.
- Article
Fast Generalized Subset Scan for Anomalous Pattern Detection
By: Edward McFowland III, Skyler Speakman and Daniel B. Neill
We propose Fast Generalized Subset Scan (FGSS), a new method for detecting anomalous patterns in general categorical data sets. We frame the pattern detection problem as a search over subsets of data records and attributes, maximizing a nonparametric scan statistic... View Details
Keywords: Pattern Detection; Anomaly Detection; Knowledge Discovery; Bayesian Networks; Scan Statistics; Analytics and Data Science
McFowland III, Edward, Skyler Speakman, and Daniel B. Neill. "Fast Generalized Subset Scan for Anomalous Pattern Detection." Art. 12. Journal of Machine Learning Research 14 (2013): 1533–1561.