Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (2,826) Arrow Down
Filter Results: (2,826) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (2,826)
    • People  (14)
    • News  (647)
    • Research  (1,557)
    • Events  (19)
    • Multimedia  (9)
  • Faculty Publications  (827)

Show Results For

  • All HBS Web  (2,826)
    • People  (14)
    • News  (647)
    • Research  (1,557)
    • Events  (19)
    • Multimedia  (9)
  • Faculty Publications  (827)
Page 1 of 2,826 Results →
  • Article

Learning Models for Actionable Recourse

By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely... View Details
Keywords: Machine Learning Models; Recourse; Algorithm; Mathematical Methods
Citation
Read Now
Related
Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
  • March 2022 (Revised January 2025)
  • Technical Note

Prediction & Machine Learning

By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
This note provides an introduction to machine learning for an introductory data science course. The note begins with a description of supervised, unsupervised, and reinforcement learning. Then, the note provides a brief explanation of the difference between traditional... View Details
Keywords: Machine Learning; Data Science; Learning; Analytics and Data Science; Performance Evaluation; AI and Machine Learning
Citation
Educators
Purchase
Related
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Prediction & Machine Learning." Harvard Business School Technical Note 622-101, March 2022. (Revised January 2025.)
  • August 2020 (Revised September 2020)
  • Technical Note

Assessing Prediction Accuracy of Machine Learning Models

By: Michael W. Toffel, Natalie Epstein, Kris Ferreira and Yael Grushka-Cockayne
The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools... View Details
Keywords: Machine Learning; Statistics; Econometric Analyses; Experimental Methods; Data Analysis; Data Analytics; Forecasting and Prediction; Analytics and Data Science; Analysis; Mathematical Methods
Citation
Educators
Purchase
Related
Toffel, Michael W., Natalie Epstein, Kris Ferreira, and Yael Grushka-Cockayne. "Assessing Prediction Accuracy of Machine Learning Models." Harvard Business School Technical Note 621-045, August 2020. (Revised September 2020.)
  • 2022
  • Working Paper

Machine Learning Models for Prediction of Scope 3 Carbon Emissions

By: George Serafeim and Gladys Vélez Caicedo
For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In this paper, we train machine learning algorithms on 15... View Details
Keywords: Carbon Emissions; Climate Change; Environment; Carbon Accounting; Machine Learning; Artificial Intelligence; Digital; Data Science; Environmental Sustainability; Environmental Management; Environmental Accounting
Citation
SSRN
Read Now
Related
Serafeim, George, and Gladys Vélez Caicedo. "Machine Learning Models for Prediction of Scope 3 Carbon Emissions." Harvard Business School Working Paper, No. 22-080, June 2022.
  • Research Summary

Making Machine Learning Models Fair

By: Himabindu Lakkaraju
The goal of this research direction is to ensure that the machine learning models we build and deploy do not discriminate against individuals from minority groups. View Details
  • 18 Nov 2016
  • Conference Presentation

Rawlsian Fairness for Machine Learning

By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
Keywords: Machine Learning; Algorithms; Fairness; Decision Making; Mathematical Methods
Citation
Related
Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
  • Research Summary

Making Machine Learning Models Interpretable

By: Himabindu Lakkaraju
I work on developing various tools and methodologies which can help decision makers (e.g., doctors, managers) to better understand the predictions of machine learning models. View Details
  • Teaching Interest

Big Data Analytics and Machine Learning

Big data in the context of marketing, management, and innovation strategy. Machine Learning algorithms and tools. 
 View Details
Keywords: Big Data; Machine Learning; Analytics
  • 2019
  • Working Paper

Soul and Machine (Learning)

By: Davide Proserpio, John R. Hauser, Xiao Liu, Tomomichi Amano, Alex Burnap, Tong Guo, Dokyun Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu and Hema Yoganarasimhan
Machine learning is bringing us self-driving cars, improved medical diagnostics, and machine translation, but can it improve marketing decisions? It can. Machine learning models predict extremely well, are scalable to “big data,” and are a natural fit to rich media... View Details
Keywords: Machine Learning; Technological Innovation; Marketing; AI and Machine Learning
Citation
SSRN
Read Now
Related
Proserpio, Davide, John R. Hauser, Xiao Liu, Tomomichi Amano, Alex Burnap, Tong Guo, Dokyun Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu, and Hema Yoganarasimhan. "Soul and Machine (Learning)." Harvard Business School Working Paper, No. 20-036, September 2019.
  • February 2021
  • Tutorial

Assessing Prediction Accuracy of Machine Learning Models

By: Michael Toffel and Natalie Epstein
This video describes how to assess the accuracy of machine learning prediction models, primarily in the context of machine learning models that predict binary outcomes, such as logistic regression, random forest, or nearest neighbor models. After introducing and... View Details
Keywords: Statistics; Experiments; Forecasting and Prediction; Performance Evaluation; AI and Machine Learning
Citation
Purchase
Related
Toffel, Michael, and Natalie Epstein. Assessing Prediction Accuracy of Machine Learning Models. Harvard Business School Tutorial 621-706, February 2021. (Click here to access this tutorial.)
  • 2022
  • Working Paper

TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability... View Details
Keywords: Natural Language Conversations; Predictive Models; AI and Machine Learning
Citation
Read Now
Related
Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
  • 2017
  • Working Paper

Machine Learning Methods for Strategy Research

By: Mike Horia Teodorescu
Numerous applications of machine learning have gained acceptance in the field of strategy and management research only during the last few years. Established uses span such diverse problems as strategic foreign investments, strategic resource allocation, systemic risk... View Details
Keywords: Machine Learning; Natural Language Processing; Classification; Decision Trees; Strategic Decisions; Strategy; Research; Information Technology
Citation
SSRN
Read Now
Related
Teodorescu, Mike Horia. "Machine Learning Methods for Strategy Research." Harvard Business School Working Paper, No. 18-011, August 2017. (Revised October 2017.)
  • 2019
  • Article

An Empirical Study of Rich Subgroup Fairness for Machine Learning

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Keywords: Machine Learning; Fairness; AI and Machine Learning
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
  • August 2020
  • Article

Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation

By: Prithwiraj Choudhury, Evan Starr and Rajshree Agarwal
The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic... View Details
Keywords: Machine Learning; Bias; Human Capital; Management; Strategy
Citation
Find at Harvard
Read Now
Related
Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal. "Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation." Strategic Management Journal 41, no. 8 (August 2020): 1381–1411.
  • Article

Soul and Machine (Learning)

By: Davide Proserpio, John R. Hauser, Xiao Liu, Tomomichi Amano, Burnap Alex, Tong Guo, Dokyun (DK) Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu and Hema Yoganarasimhan
Machine learning is bringing us self-driving cars, medical diagnoses, and language translation, but how can machine learning help marketers improve marketing decisions? Machine learning models predict extremely well, are scalable to “big data,” and are a natural fit to... View Details
Keywords: Machine Learning; Marketing Applications; Knowledge; Technological Innovation; Core Relationships; Marketing; Applications and Software
Citation
Find at Harvard
Read Now
Related
Proserpio, Davide, John R. Hauser, Xiao Liu, Tomomichi Amano, Burnap Alex, Tong Guo, Dokyun (DK) Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu, and Hema Yoganarasimhan. "Soul and Machine (Learning)." Marketing Letters 31, no. 4 (December 2020): 393–404.
  • Article

Adaptive Machine Unlearning

By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees... View Details
Keywords: Machine Learning; AI and Machine Learning
Citation
Read Now
Related
Gupta, Varun, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. "Adaptive Machine Unlearning." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
  • January 2021
  • Article

Machine Learning for Pattern Discovery in Management Research

By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Citation
Find at Harvard
Read Now
Related
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
  • April 2020
  • Article

Regulatory Oversight, Causal Inference, and Safe and Effective Health Care Machine Learning

By: Ariel Dora Stern and W. Nicholson Price, II
In recent years, the applications of Machine Learning (ML) in the health care delivery setting have grown to become both abundant and compelling. Regulators have taken notice of these developments and the U.S. Food and Drug Administration (FDA) has been engaging... View Details
Keywords: Machine Learning; Causal Inference; Health Care and Treatment; Safety; Governing Rules, Regulations, and Reforms
Citation
Find at Harvard
Read Now
Related
Stern, Ariel Dora, and W. Nicholson Price, II. "Regulatory Oversight, Causal Inference, and Safe and Effective Health Care Machine Learning." Biostatistics 21, no. 2 (April 2020): 363–367.
  • Research Summary

Adoption of Machine Learning Models in Real World Decision Making

By: Himabindu Lakkaraju
The goal of this research is to assess the impact of deploying machine learning models in real world decision making in domains such as health care. View Details
  • 2020
  • Working Paper

Machine Learning for Pattern Discovery in Management Research

By: Prithwiraj Choudhury
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used as an observation for further inductive or abductive research, but should not be treated as the result of a... View Details
Keywords: Machine Learning; Theory Building; Induction; Decision Trees; Random Forests; K-nearest Neighbors; Neural Network; P-hacking; Analytics and Data Science; Analysis
Citation
SSRN
Related
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Harvard Business School Working Paper, No. 19-032, September 2018. (Revised June 2020.)
  • 1
  • 2
  • …
  • 141
  • 142
  • →
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.