Filter Results:
(67)
Show Results For
- All HBS Web (67)
- Faculty Publications (32)
Show Results For
- All HBS Web (67)
- Faculty Publications (32)
Page 1 of 67
Results →
- August 2020
- Article
Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation
By: Prithwiraj Choudhury, Evan Starr and Rajshree Agarwal
The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic... View Details
Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal. "Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation." Strategic Management Journal 41, no. 8 (August 2020): 1381–1411.
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- 2023
- Working Paper
Feature Importance Disparities for Data Bias Investigations
By: Peter W. Chang, Leor Fishman and Seth Neel
It is widely held that one cause of downstream bias in classifiers is bias present in the training data. Rectifying such biases may involve context-dependent interventions such as training separate models on subgroups, removing features with bias in the collection... View Details
Chang, Peter W., Leor Fishman, and Seth Neel. "Feature Importance Disparities for Data Bias Investigations." Working Paper, March 2023.
- 2023
- Article
Provable Detection of Propagating Sampling Bias in Prediction Models
By: Pavan Ravishankar, Qingyu Mo, Edward McFowland III and Daniel B. Neill
With an increased focus on incorporating fairness in machine learning models, it becomes imperative not only to assess and mitigate bias at each stage of the machine learning pipeline but also to understand the downstream impacts of bias across stages. Here we consider... View Details
Ravishankar, Pavan, Qingyu Mo, Edward McFowland III, and Daniel B. Neill. "Provable Detection of Propagating Sampling Bias in Prediction Models." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9562–9569. (Presented at the 37th AAAI Conference on Artificial Intelligence (2/7/23-2/14/23) in Washington, DC.)
Eliminating unintended bias in personalized policies using Bias Eliminating Adapted Trees (BEAT) - PNAS
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those... View Details
- 18 Oct 2022
- Research & Ideas
When Bias Creeps into AI, Managers Can Stop It by Asking the Right Questions
algorithm perpetuates this. Another source of bias is incomplete or unrepresentative information. A famous example is facial recognition. If I use mostly photos of white men to train the machine to learn... View Details
Keywords: by Rachel Layne
- 19 Nov 2019
- Op-Ed
Gender Bias Complaints against Apple Card Signal a Dark Side to Fintech
bias in Goldman Sachs’s underwriting model. (Goldman developed and issued the card.) Adding fuel to the fire, Apple co-founder Steve Wozniak shared that the same thing had happened to him and his wife. Officials from the New York... View Details
- September 29, 2023
- Article
Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI
By: Simon Friis and James Riley
When it comes to artificial intelligence and inequality, algorithmic bias rightly receives a lot of attention. But it’s just one way that AI can lead to inequitable outcomes. To truly create equitable AI, we need to consider three forces through which it might make... View Details
Friis, Simon, and James Riley. "Eliminating Algorithmic Bias Is Just the Beginning of Equitable AI." Harvard Business Review (website) (September 29, 2023).
- 2025
- Article
Humor as a Window into Generative AI Bias
By: Roger Samure, Julian De Freitas and Stefano Puntoni
A preregistered audit of 600 images by generative AI across 150 different prompts explores the link between humor and discrimination in consumer-facing AI solutions. When ChatGPT updates images to make them “funnier”, the prevalence of stereotyped groups changes. While... View Details
Samure, Roger, Julian De Freitas, and Stefano Puntoni. "Humor as a Window into Generative AI Bias." Art. 1326. Scientific Reports 15 (2025).
- 01 Apr 2019
- What Do You Think?
Does Our Bias Against Federal Deficits Need Rethinking?
huge deficits stretching back and forward for a decade,” according to Kautz. “I believe that an emerging disinflationary era, driven by more intelligent machines and continuing globalization, is why they are right. Most importantly for... View Details
Keywords: by James Heskett
- 2021
- Working Paper
Invisible Primes: Fintech Lending with Alternative Data
By: Marco Di Maggio, Dimuthu Ratnadiwakara and Don Carmichael
We exploit anonymized administrative data provided by a major fintech platform to investigate whether using alternative data to assess borrowers’ creditworthiness results in broader credit access. Comparing actual outcomes of the fintech platform’s model to... View Details
Keywords: Fintech Lending; Alternative Data; Machine Learning; Algorithm Bias; Finance; Information Technology; Financing and Loans; Analytics and Data Science; Credit
Di Maggio, Marco, Dimuthu Ratnadiwakara, and Don Carmichael. "Invisible Primes: Fintech Lending with Alternative Data." Harvard Business School Working Paper, No. 22-024, October 2021.
- 2023
- Working Paper
Auditing Predictive Models for Intersectional Biases
By: Kate S. Boxer, Edward McFowland III and Daniel B. Neill
Predictive models that satisfy group fairness criteria in aggregate for members of a protected class, but do not guarantee subgroup fairness, could produce biased predictions for individuals at the intersection of two or more protected classes. To address this risk, we... View Details
Boxer, Kate S., Edward McFowland III, and Daniel B. Neill. "Auditing Predictive Models for Intersectional Biases." Working Paper, June 2023.
- October 2023
- Teaching Note
Timnit Gebru: 'SILENCED No More' on AI Bias and The Harms of Large Language Models
By: Tsedal Neeley and Tim Englehart
Teaching Note for HBS Case No. 422-085. Dr. Timnit Gebru—a leading artificial intelligence (AI) computer scientist and co-lead of Google’s Ethical AI team—was messaging with one of her colleagues when she saw the words: “Did you resign?? Megan sent an email saying that... View Details
- September–October 2021
- Article
Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb
By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among... View Details
Keywords: Smart Pricing; Pricing Algorithm; Machine Bias; Discrimination; Racial Disparity; Social Inequality; Airbnb Revenue; Revenue; Race; Equality and Inequality; Prejudice and Bias; Price; Mathematical Methods; Accommodations Industry
Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the... View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia, 217–238. Review of Marketing Research. Emerald Publishing Limited, 2023.
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed... View Details
Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- September 17, 2021
- Article
AI Can Help Address Inequity—If Companies Earn Users' Trust
By: Shunyuan Zhang, Kannan Srinivasan, Param Singh and Nitin Mehta
While companies may spend a lot of time testing models before launch, many spend too little time considering how they will work in the wild. In particular, they fail to fully consider how rates of adoption can warp developers’ intent. For instance, Airbnb launched a... View Details
Keywords: Artificial Intelligence; Algorithmic Bias; Technological Innovation; Perception; Diversity; Equality and Inequality; Trust; AI and Machine Learning
Zhang, Shunyuan, Kannan Srinivasan, Param Singh, and Nitin Mehta. "AI Can Help Address Inequity—If Companies Earn Users' Trust." Harvard Business Review Digital Articles (September 17, 2021).
- March 2019
- Case
Wattpad
By: John Deighton and Leora Kornfeld
How to run a platform to match four million writers of stories to 75 million readers? Use data science. Make money by doing deals with television and filmmakers and book publishers. The case describes the challenges of matching readers to stories and of helping writers... View Details
Keywords: Platform Businesses; Creative Industries; Publishing; Data Science; Machine Learning; Collaborative Filtering; Women And Leadership; Managing Data Scientists; Big Data; Recommender Systems; Digital Platforms; Information Technology; Intellectual Property; Analytics and Data Science; Publishing Industry; Entertainment and Recreation Industry; Canada; United States; Philippines; Viet Nam; Turkey; Indonesia; Brazil
Deighton, John, and Leora Kornfeld. "Wattpad." Harvard Business School Case 919-413, March 2019.
- Forthcoming
- Article
Serving with a Smile on Airbnb: Analyzing the Economic Returns and Behavioral Underpinnings of the Host’s Smile
By: Shunyuan Zhang, Elizabeth Friedman, Kannan Srinivasan, Ravi Dhar and Xupin Zhang
Non-informational cues, such as facial expressions, can significantly influence judgments and interpersonal impressions. While past research has explored how smiling affects business outcomes in offline or in-store contexts, relatively less is known about how smiling... View Details
Keywords: Sharing Economy; Airbnb; Image Feature Extraction; Machine Learning; Facial Expressions; Prejudice and Bias; Nonverbal Communication; E-commerce; Consumer Behavior; Perception
Zhang, Shunyuan, Elizabeth Friedman, Kannan Srinivasan, Ravi Dhar, and Xupin Zhang. "Serving with a Smile on Airbnb: Analyzing the Economic Returns and Behavioral Underpinnings of the Host’s Smile." Journal of Consumer Research (forthcoming). (Pre-published online August 9, 2024.)