Filter Results:
(438)
Show Results For
- All HBS Web
(438)
- News (134)
- Research (192)
- Events (2)
- Multimedia (5)
- Faculty Publications (145)
Show Results For
- All HBS Web
(438)
- News (134)
- Research (192)
- Events (2)
- Multimedia (5)
- Faculty Publications (145)
Page 1 of 438
Results →
- May 2024
- Supplement
HubSpot and Motion AI (B): Generative AI Opportunities
By: Jill Avery
The technologies driving artificial intelligence (AI) had progressed significantly since HubSpot’s acquisition of Motion AI in 2017. Generative AI was the newest major development. Software-as-a-service (SaaS) companies such as HubSpot were analyzing how generative AI... View Details
Keywords: Artificial Intelligence; CRM; Chatbots; Sales Management; Generative Ai; SaaS; Marketing; Sales; AI and Machine Learning; Customer Relationship Management; Applications and Software; Technological Innovation; Competitive Advantage; Technology Industry; United States
Avery, Jill. "HubSpot and Motion AI (B): Generative AI Opportunities." Harvard Business School Supplement 524-088, May 2024.
- May 2024
- Teaching Note
AI21 Labs in 2023: Strategy for Generative AI
By: David Yoffie
Teaching Note for HBS Case 724-383. The case has 3 important teaching purposes: First, what are the advantages and disadvantages of imitation? (e.g., Should AI21 imitate OpenAI with a chatbot?) Second, what are the advantages and disadvantages of keeping new technology... View Details
- July 2023 (Revised July 2023)
- Background Note
Generative AI Value Chain
By: Andy Wu and Matt Higgins
Generative AI refers to a type of artificial intelligence (AI) that can create new content (e.g., text, image, or audio) in response to a prompt from a user. ChatGPT, Bard, and Claude are examples of text generating AIs, and DALL-E, Midjourney, and Stable Diffusion are... View Details
Keywords: AI; Artificial Intelligence; Model; Hardware; Data Centers; AI and Machine Learning; Applications and Software; Analytics and Data Science; Value
Wu, Andy, and Matt Higgins. "Generative AI Value Chain." Harvard Business School Background Note 724-355, July 2023. (Revised July 2023.)
- 2024
- Working Paper
Generative AI and the Nature of Work
By: Manuel Hoffmann, Sam Boysel, Frank Nagle, Sida Peng and Kevin Xu
Recent advances in artificial intelligence (AI) technology demonstrate considerable potential to
complement human capital intensive activities. While an emerging literature documents wide-ranging productivity
effects of AI, relatively little attention has been paid... View Details
Keywords: Generative Ai; Digital Work; Open Source Software; Knowledge Economy; AI and Machine Learning; Open Source Distribution; Organizational Structure; Performance Productivity; Labor
Hoffmann, Manuel, Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu. "Generative AI and the Nature of Work." Harvard Business School Working Paper, No. 25-021, October 2024.
- December 2023 (Revised November 2024)
- Case
Generative AI and the Future of Work
By: Christopher Stanton, Matt Higgins, Shira Aronson and Meg Shriber
Generative AI seemed poised to reshape the world of work, including the higher-wage, white-collar jobs typically pursued by MBA graduates. Informed by the latest research, this case explores generative AI's potential impacts on work, productivity, value creation, and... View Details
Keywords: AI; Future Of Work; Labor Market; AI and Machine Learning; Labor; Value Creation; Performance Productivity; Technology Industry; United States
Stanton, Christopher, Matt Higgins, Shira Aronson, and Meg Shriber. "Generative AI and the Future of Work." Harvard Business School Case 824-130, December 2023. (Revised November 2024.)
- 2024
- Working Paper
The Crowdless Future? Generative AI and Creative Problem Solving
The rapid advances in generative artificial intelligence (AI) open up attractive opportunities for creative problem-solving through human-guided AI partnerships. To explore this potential, we initiated a crowdsourcing challenge focused on sustainable, circular economy... View Details
Keywords: Large Language Models; Crowdsourcing; Generative Ai; Creative Problem-solving; Organizational Search; AI-in-the-loop; Prompt Engineering; AI and Machine Learning; Innovation and Invention
Boussioux, Léonard, Jacqueline N. Lane, Miaomiao Zhang, Vladimir Jacimovic, and Karim R. Lakhani. "The Crowdless Future? Generative AI and Creative Problem Solving." Harvard Business School Working Paper, No. 24-005, July 2023. (Revised July 2024.)
- May 2024
- Teaching Note
AI Wars
By: Andy Wu and Matt Higgins
Teaching Note for HBS Case No. 723-434. In 2024, the world was looking to Google to see what the search giant and long-time putative technical leader in artificial intelligence (AI) would do to compete in the massively hyped technology of generative AI popularized over... View Details
- March 2024
- Teaching Note
'Storrowed': A Generative AI Exercise
By: Mitchell Weiss
Teaching Note for HBS Exercise No. 824-188. “Storrowed” is an exercise to help participants raise their proficiency with generative AI. It begins by highlighting a problem: trucks getting wedged underneath bridges in Boston, Massachusetts on the city’s Storrow Drive.... View Details
- April 2023 (Revised February 2024)
- Case
AI Wars
By: Andy Wu, Matt Higgins, Miaomiao Zhang and Hang Jiang
In February 2024, the world was looking to Google to see what the search giant and long-time putative technical leader in artificial intelligence (AI) would do to compete in the massively hyped technology of generative AI. Over a year ago, OpenAI released ChatGPT, a... View Details
Keywords: AI; Artificial Intelligence; AI and Machine Learning; Technology Adoption; Competitive Strategy; Technological Innovation
Wu, Andy, Matt Higgins, Miaomiao Zhang, and Hang Jiang. "AI Wars." Harvard Business School Case 723-434, April 2023. (Revised February 2024.)
- March 2024
- Exercise
'Storrowed': A Generative AI Exercise
By: Mitchell Weiss
"Storrowed" is an exercise to help participants raise their capacity and curiosity for generative AI. It focuses on generative AI for problem understanding and ideation, but can be adapted for use more broadly. Participants use generative AI tools to understand a... View Details
Weiss, Mitchell. "'Storrowed': A Generative AI Exercise." Harvard Business School Exercise 824-188, March 2024.
- 01 Jun 2024
- News
Leveraging Generative AI
Four decades after HBS became the first business school in the country to require the use of personal computers in the MBA Program, the School is undergoing a different kind of technological transformation, one that leverages generative artificial intelligence (GenAI)... View Details
Keywords: Jennifer Gillespie
- 2024
- Working Paper
Why Most Resist AI Companions
By: Julian De Freitas, Zeliha Oğuz-Uğuralp, Ahmet Kaan Uğuralp and Stefano Puntoni
Chatbots are now able to form emotional relationships with people and alleviate loneliness—a growing public health concern. Behavioral research provides little insight into whether everyday people are likely to use these applications and why. We address this question... View Details
Keywords: Generative Ai; Chatbots; Artificial Intelligence; Algorithmic Aversion; Lonelines; Technology Adoption; AI and Machine Learning; Well-being; Emotions
De Freitas, Julian, Zeliha Oğuz-Uğuralp, Ahmet Kaan Uğuralp, and Stefano Puntoni. "Why Most Resist AI Companions." Harvard Business School Working Paper, No. 25-030, December 2024.
"Storrowed": A Generative AI Exercise
"Storrowed" is an exercise to help participants raise their capacity and curiosity for generative AI. It focuses on generative AI for problem understanding and ideation. The exercise begins with the following introduction: "A problem vexed Boston, Massachusetts,... View Details
- Web
Generative AI - Alumni
Careers Generative AI Careers Generative AI In today's dynamic job market, Generative Artificial Intelligence... View Details
- June 19, 2023
- Article
Should You Start a Generative AI Company?
Many entrepreneurs are considering starting companies that leverage the latest generative AI technology, but they must ask themselves whether they have what it takes to compete on increasingly commoditized foundational models, or whether they should instead... View Details
De Freitas, Julian. "Should You Start a Generative AI Company?" Harvard Business Review (website) (June 19, 2023).
- 2024
- Working Paper
The Wade Test: Generative AI and CEO Communication
By: Prithwiraj Choudhury, Bart S. Vanneste and Amirhossein Zohrehvand
Can generative artificial intelligence (AI) transform the role of the CEO by effectively automating CEO
communication? This study investigates whether AI can mimic a human CEO and whether employees’
perception of the communication’s source matter. In a field... View Details
Choudhury, Prithwiraj, Bart S. Vanneste, and Amirhossein Zohrehvand. "The Wade Test: Generative AI and CEO Communication." Harvard Business School Working Paper, No. 25-008, August 2024.
The Uneven Impact of Generative AI on Entrepreneurial Performance
There is a growing belief that scalable and low-cost AI assistance can improve firm decision-making and economic performance. However, running a business involves a myriad of open-ended problems, making it hard to generalize from recent studies showing that generative... View Details
- January 2024
- Case
The Financial Times (FT) and Generative AI
By: Andrew Rashbass, Ramon Casadesus-Masanell and Jordan Mitchell
In September 2023, John Ridding, CEO of the Financial Times, was considering the possible impact of Generative AI on the industry and his business. Having navigated successfully the seismic shift from print to digital, and reporting record results, the company... View Details
Keywords: AI and Machine Learning; Technology Adoption; Change Management; Journalism and News Industry
Rashbass, Andrew, Ramon Casadesus-Masanell, and Jordan Mitchell. "The Financial Times (FT) and Generative AI." Harvard Business School Case 724-410, January 2024.
- 2024
- Working Paper
Global Evidence on Gender Gaps and Generative AI
By: Nicholas G. Otis, Solène Delecourt, Katelynn Cranney and Rembrand Koning
Generative AI has the potential to transform productivity and reduce inequality, but only if used broadly. In this paper, we show that recently identified gender gaps in AI use are nearly universal. Synthesizing evidence from 16 studies that surveyed 100,000... View Details
Otis, Nicholas G., Solène Delecourt, Katelynn Cranney, and Rembrand Koning. "Global Evidence on Gender Gaps and Generative AI." Harvard Business School Working Paper, No. 25-023, October 2024.