Filter Results:
(97)
Show Results For
- All HBS Web
(492)
- Faculty Publications (97)
Show Results For
- All HBS Web
(492)
- Faculty Publications (97)
Page 1 of 97
Results →
- 2024
- Working Paper
Why Most Resist AI Companions
By: Julian De Freitas, Zeliha Oğuz-Uğuralp, Ahmet Kaan Uğuralp and Stefano Puntoni
Chatbots are now able to form emotional relationships with people and alleviate loneliness—a growing public health concern. Behavioral research provides little insight into whether everyday people are likely to use these applications and why. We address this question... View Details
Keywords: Generative Ai; Chatbots; Artificial Intelligence; Algorithmic Aversion; Lonelines; Technology Adoption; AI and Machine Learning; Well-being; Emotions
De Freitas, Julian, Zeliha Oğuz-Uğuralp, Ahmet Kaan Uğuralp, and Stefano Puntoni. "Why Most Resist AI Companions." Harvard Business School Working Paper, No. 25-030, December 2024.
- November 2024
- Case
Cheerful Music
By: Shunyuan Zhang, Feng Zhu and Nancy Hua Dai
Established by Snow Jiang in 2019 in Shenzhen, China, Cheerful Music was a record label company that had created many hit songs in China. “Yi Xiao Jiang Hu,” its most famous hit song, gained 50 billion views on TikTok as the background music for the Subject Three... View Details
- 2024
- Working Paper
Climate Solutions, Transition Risk, and Stock Returns
By: Shirley Lu, Edward J. Riedl, Simon Xu and George Serafeim
Using large language models to measure firms' climate solution products and services, we find that high-climate solution firms exhibit lower stock returns and higher market valuation multiples. Their stock prices respond positively to events signaling increased demand... View Details
Keywords: Technology; Generative Ai; Large Language Models; Climate Finance; Climate Change; Innovation and Invention; Environmental Sustainability; AI and Machine Learning; Investment; Financial Markets
Lu, Shirley, Edward J. Riedl, Simon Xu, and George Serafeim. "Climate Solutions, Transition Risk, and Stock Returns." Harvard Business School Working Paper, No. 25-024, November 2024.
- 2024
- Working Paper
Generative AI and the Nature of Work
By: Manuel Hoffmann, Sam Boysel, Frank Nagle, Sida Peng and Kevin Xu
Recent advances in artificial intelligence (AI) technology demonstrate considerable potential to
complement human capital intensive activities. While an emerging literature documents wide-ranging productivity
effects of AI, relatively little attention has been paid... View Details
Keywords: Generative Ai; Digital Work; Open Source Software; Knowledge Economy; AI and Machine Learning; Open Source Distribution; Organizational Structure; Performance Productivity; Labor
Hoffmann, Manuel, Sam Boysel, Frank Nagle, Sida Peng, and Kevin Xu. "Generative AI and the Nature of Work." Harvard Business School Working Paper, No. 25-021, October 2024.
- October 2024
- Teaching Note
The Financial Times (FT) and Generative AI
By: Ramon Casadesus-Masanell and Jordan Mitchell
Teaching Note for HBS Case No. 724-410. View Details
Keywords: Strategy
- 2024
- Working Paper
Global Evidence on Gender Gaps and Generative AI
By: Nicholas G. Otis, Solène Delecourt, Katelynn Cranney and Rembrand Koning
Generative AI has the potential to transform productivity and reduce inequality, but only if used broadly. In this paper, we show that recently identified gender gaps in AI use are nearly universal. Synthesizing evidence from 16 studies that surveyed 100,000... View Details
Otis, Nicholas G., Solène Delecourt, Katelynn Cranney, and Rembrand Koning. "Global Evidence on Gender Gaps and Generative AI." Harvard Business School Working Paper, No. 25-023, October 2024.
- September 2024
- Exercise
Finding Your 'Jagged Frontier': A Generative AI Exercise
By: Mitchell Weiss
In 2023 a set of scholars set out to study the effect of artificial intelligence (AI) on the quality and productivity of knowledge workers—in this specific instance, management consultants. They wanted to know across a range of tasks in a workflow, which, if any, would... View Details
Keywords: AI and Machine Learning
Weiss, Mitchell. "Finding Your 'Jagged Frontier': A Generative AI Exercise." Harvard Business School Exercise 825-070, September 2024.
- September 2024
- Exercise
Building an AI First Snack Company: A Hands-on Generative AI Exercise
By: Iavor I. Bojinov
Although the term 'Generative AI' (GenAI) is widely recognized, its practical application in daily workflows has yet to be understood. This exercise introduces students to GenAI tools, demonstrating how they can be seamlessly integrated into professional work practices... View Details
Keywords: AI and Machine Learning; Technology Adoption; Marketing Strategy; Product Launch; Brands and Branding
Bojinov, Iavor I. "Building an AI First Snack Company: A Hands-on Generative AI Exercise." Harvard Business School Exercise 625-052, September 2024.
- 2024
- Article
Learning Under Random Distributional Shifts
By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the U.S.
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can... View Details
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Learning Under Random Distributional Shifts." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 27th (2024).
- 2024
- Working Paper
The Wade Test: Generative AI and CEO Communication
By: Prithwiraj Choudhury, Bart S. Vanneste and Amirhossein Zohrehvand
Can generative artificial intelligence (AI) transform the role of the CEO by effectively automating CEO
communication? This study investigates whether AI can mimic a human CEO and whether employees’
perception of the communication’s source matter. In a field... View Details
Choudhury, Prithwiraj, Bart S. Vanneste, and Amirhossein Zohrehvand. "The Wade Test: Generative AI and CEO Communication." Harvard Business School Working Paper, No. 25-008, August 2024.
- August 2024
- Case
DBS' AI Journey
By: Feng Zhu, Harold Zhu and Adina Wong
Headquartered in Singapore, DBS Bank, one of Asia's leading financial services groups, embarked on a multi-year digital transformation under CEO Piyush Gupta in 2014. It was then that DBS also began experimenting with AI to drive value for the business and customers.... View Details
Keywords: Corporate Governance; AI and Machine Learning; Digital Transformation; Risk Management; Value Creation; Banking Industry; Financial Services Industry; Asia; Singapore
Zhu, Feng, Harold Zhu, and Adina Wong. "DBS' AI Journey." Harvard Business School Case 625-053, August 2024.
- 2024
- Working Paper
The Narrative AI Advantage? A Field Experiment on Generative AI-Augmented Evaluations of Early-Stage Innovations
By: Jacqueline N. Lane, Léonard Boussioux, Charles Ayoubi, Ying Hao Chen, Camila Lin, Rebecca Spens, Pooja Wagh and Pei-Hsin Wang
The rise of generative artificial intelligence (AI) is transforming creative problem-solving, necessitating new approaches for evaluating innovative solutions. This study explores how human-AI collaboration can enhance early-stage evaluations, focusing on the interplay... View Details
Lane, Jacqueline N., Léonard Boussioux, Charles Ayoubi, Ying Hao Chen, Camila Lin, Rebecca Spens, Pooja Wagh, and Pei-Hsin Wang. "The Narrative AI Advantage? A Field Experiment on Generative AI-Augmented Evaluations of Early-Stage Innovations." Harvard Business School Working Paper, No. 25-001, August 2024. (Revised August 2024.)
- July 2024
- Article
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp and Stefano Puntoni
Chatbots are now able to engage in sophisticated conversations with consumers. Due to the ‘black box’ nature of the algorithms, it is impossible to predict in advance how these conversations will unfold. Behavioral research provides little insight into potential safety... View Details
Keywords: Autonomy; Chatbots; New Technology; Brand Crises; Mental Health; Large Language Model; AI and Machine Learning; Behavior; Well-being; Technological Innovation; Ethics
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Journal of Consumer Psychology 34, no. 3 (July 2024): 481–491.
- 2024
- Working Paper
Don’t Expect Juniors to Teach Senior Professionals to Use Generative AI: Emerging Technology Risks and Novice AI Risk Mitigation Tactics
By: Katherine C. Kellogg, Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon and Karim R. Lakhani
The literature on communities of practice demonstrates that a proven way for senior professionals to upskill
themselves in the use of new technologies that undermine existing expertise is to learn from junior
professionals. It notes that juniors may be better able... View Details
Kellogg, Katherine C., Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon, and Karim R. Lakhani. "Don’t Expect Juniors to Teach Senior Professionals to Use Generative AI: Emerging Technology Risks and Novice AI Risk Mitigation Tactics." Harvard Business School Working Paper, No. 24-074, June 2024.
- 2024
- Working Paper
The Value of AI Innovations
By: Wilbur Xinyuan Chen, Terrence Tianshuo Shi and Suraj Srinivasan
We study the value of AI innovations as it diffuses across general and application sectors, using the United States Patent and Trademark Office’s (USPTO) AI patent dataset. Investors value these innovations more than others, as AI patents exhibit a 9% value premium,... View Details
Keywords: AI and Machine Learning; Valuation; Technological Innovation; Open Source Distribution; Patents; Policy; Knowledge Sharing; Technology Industry
Chen, Wilbur Xinyuan, Terrence Tianshuo Shi, and Suraj Srinivasan. "The Value of AI Innovations." Harvard Business School Working Paper, No. 24-069, May 2024.
- May 2024
- Supplement
HubSpot and Motion AI (B): Generative AI Opportunities
By: Jill Avery
The technologies driving artificial intelligence (AI) had progressed significantly since HubSpot’s acquisition of Motion AI in 2017. Generative AI was the newest major development. Software-as-a-service (SaaS) companies such as HubSpot were analyzing how generative AI... View Details
Keywords: Artificial Intelligence; CRM; Chatbots; Sales Management; Generative Ai; SaaS; Marketing; Sales; AI and Machine Learning; Customer Relationship Management; Applications and Software; Technological Innovation; Competitive Advantage; Technology Industry; United States
Avery, Jill. "HubSpot and Motion AI (B): Generative AI Opportunities." Harvard Business School Supplement 524-088, May 2024.
- May 2024
- Teaching Note
AI Wars
By: Andy Wu and Matt Higgins
Teaching Note for HBS Case No. 723-434. In 2024, the world was looking to Google to see what the search giant and long-time putative technical leader in artificial intelligence (AI) would do to compete in the massively hyped technology of generative AI popularized over... View Details
- May 2024
- Teaching Note
AI21 Labs in 2023: Strategy for Generative AI
By: David Yoffie
Teaching Note for HBS Case 724-383. The case has 3 important teaching purposes: First, what are the advantages and disadvantages of imitation? (e.g., Should AI21 imitate OpenAI with a chatbot?) Second, what are the advantages and disadvantages of keeping new technology... View Details
- 2024
- Working Paper
Old Moats for New Models: Openness, Control, and Competition in Generative AI
By: Pierre Azoulay, Joshua L. Krieger and Abhishek Nagaraj
Drawing insights from the field of innovation economics, we discuss the likely competitive environment shaping generative AI advances. Central to our analysis are the concepts of appropriability—whether firms in the industry are able to control the knowledge generated... View Details
Azoulay, Pierre, Joshua L. Krieger, and Abhishek Nagaraj. "Old Moats for New Models: Openness, Control, and Competition in Generative AI." NBER Working Paper Series, No. 7442, May 2024.