Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (266) Arrow Down
Filter Results: (266) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (968)
    • People  (11)
    • News  (306)
    • Research  (266)
    • Events  (2)
    • Multimedia  (11)
  • Faculty Publications  (65)

Show Results For

  • All HBS Web  (968)
    • People  (11)
    • News  (306)
    • Research  (266)
    • Events  (2)
    • Multimedia  (11)
  • Faculty Publications  (65)
Page 1 of 266 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • 2021
  • Working Paper

Deep Learning for Two-Sided Matching

By: Sai Srivatsa Ravindranatha, Zhe Feng, Shira Li, Jonathan Ma, Scott Duke Kominers and David Parkes
We initiate the use of a multi-layer neural network to model two-sided matching and to explore the design space between strategy-proofness and stability. It is well known that both properties cannot be achieved simultaneously but the efficient frontier in this design... View Details
Keywords: Strategy-proofness; Deep Learning; Two-Sided Platforms; Marketplace Matching; Balance and Stability
Citation
Read Now
Related
Srivatsa Ravindranatha, Sai, Zhe Feng, Shira Li, Jonathan Ma, Scott Duke Kominers, and David Parkes. "Deep Learning for Two-Sided Matching." Working Paper, July 2021.
  • Article

Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs

By: Michael G. Endres, Florian Hillen, Marios Salloumis, Ahmad R. Sedaghat, Stefan M. Niehues, Olivia Quatela, Henning Hanken, Ralf Smeets, Benedicta Beck-Broichsitter, Carsten Rendenbach, Karim R. Lakhani, Max Helland and Robert A. Gaudin
Periapical radiolucencies, which can be detected on panoramic radiographs, are one of the most common radiographic findings in dentistry and have a differential diagnosis including infections, granuloma, cysts, and tumors. In this study, we seek to investigate the... View Details
Keywords: Artificial Intelligence; Diagnosis; Computer-assisted; Image Interpretation; Machine Learning; Radiography; Panoramic Radiograph; AI and Machine Learning
Citation
Read Now
Related
Endres, Michael G., Florian Hillen, Marios Salloumis, Ahmad R. Sedaghat, Stefan M. Niehues, Olivia Quatela, Henning Hanken, Ralf Smeets, Benedicta Beck-Broichsitter, Carsten Rendenbach, Karim R. Lakhani, Max Helland, and Robert A. Gaudin. "Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs." Diagnostics 10, no. 6 (June 2020).
  • February 2021
  • Article

Topic Classification of Electric Vehicle Consumer Experiences with Transformer-Based Deep Learning

By: Sooji Ha, Daniel J Marchetto, Sameer Dharur and Omar Isaac Asensio
The transportation sector is a major contributor to greenhouse gas (GHG) emissions and is a driver of adverse health effects globally. Increasingly, government policies have promoted the adoption of electric vehicles (EVs) as a solution to mitigate GHG emissions.... View Details
Keywords: Natural Language Processing; Analytics and Data Science; Environmental Sustainability; Infrastructure; Transportation; Policy
Citation
Read Now
Related
Ha, Sooji, Daniel J Marchetto, Sameer Dharur, and Omar Isaac Asensio. "Topic Classification of Electric Vehicle Consumer Experiences with Transformer-Based Deep Learning." Art. 100195. Patterns 2, no. 2 (February 2021).
  • 12 Dec 2014
  • Conference Presentation

Aspect Specific Sentiment Analysis Using Hierarchical Deep Learning

By: Himabindu Lakkaraju, Richard Socher and Chris Manning
Citation
Related
Lakkaraju, Himabindu, Richard Socher, and Chris Manning. "Aspect Specific Sentiment Analysis Using Hierarchical Deep Learning." Paper presented at the 28th Annual Conference on Neural Information Processing Systems (NIPS), Workshop on Deep Learning and Representation Learning, Montreal, Canada, December 12, 2014.
  • 2025
  • Working Paper

Dynamic Personalization with Multiple Customer Signals: Multi-Response State Representation in Reinforcement Learning

By: Liangzong Ma, Ta-Wei Huang, Eva Ascarza and Ayelet Israeli
Reinforcement learning (RL) offers potential for optimizing sequences of customer interactions by modeling the relationships between customer states, company actions, and long-term value. However, its practical implementation often faces significant challenges.... View Details
Keywords: Dynamic Policy; Deep Reinforcement Learning; Representation Learning; Dynamic Difficulty Adjustment; Latent Variable Models; Customer Relationship Management; Customer Value and Value Chain; Foreign Direct Investment; Analytics and Data Science
Citation
SSRN
Read Now
Related
Ma, Liangzong, Ta-Wei Huang, Eva Ascarza, and Ayelet Israeli. "Dynamic Personalization with Multiple Customer Signals: Multi-Response State Representation in Reinforcement Learning." Harvard Business School Working Paper, No. 25-037, February 2025.
  • 2020
  • Working Paper

Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach

By: Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Customer Value and Value Chain; Consumer Behavior; Analytics and Data Science; Mathematical Methods; Retail Industry
Citation
SSRN
Related
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Harvard Business School Working Paper, No. 19-091, February 2019. (Revised May 2020. Accepted at the Journal of Marketing Research.)
  • October 2021
  • Article

Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach

By: Nicolas Padilla and Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Programs; Consumer Behavior; Analysis
Citation
Find at Harvard
Related
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Journal of Marketing Research (JMR) 58, no. 5 (October 2021): 981–1006.
  • 05 May 2008
  • Research & Ideas

Connecting with Consumers Using Deep Metaphors

language of thought and expression. It is a language that marketers must learn to speak if they are to understand and connect meaningfully with their customers. Q: How did you become fascinated by deep... View Details
Keywords: by Martha Lagace; Consumer Products
  • 2024
  • Working Paper

Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization

By: Ta-Wei Huang, Eva Ascarza and Ayelet Israeli
This paper introduces Incrementality Representation Learning (IRL), a novel multitask representation learning framework that predicts heterogeneous causal effects of marketing interventions. By leveraging past experiments, IRL efficiently designs and targets... View Details
Keywords: Heterogeneous Treatment Effect; Multi-task Learning; Representation Learning; Personalization; Promotion; Deep Learning; Field Experiments; Customer Focus and Relationships; Customization and Personalization
Citation
SSRN
Read Now
Related
Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli. "Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization." Harvard Business School Working Paper, No. 24-076, June 2024.
  • December 2023
  • Article

Self-Orienting in Human and Machine Learning

By: Julian De Freitas, Ahmet Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum and T. Ullman
A current proposal for a computational notion of self is a representation of one’s body in a specific time and place, which includes the recognition of that representation as the agent. This turns self-representation into a process of self-orientation, a challenging... View Details
Keywords: AI and Machine Learning; Behavior; Learning
Citation
Find at Harvard
Read Now
Purchase
Related
De Freitas, Julian, Ahmet Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum, and T. Ullman. "Self-Orienting in Human and Machine Learning." Nature Human Behaviour 7, no. 12 (December 2023): 2126–2139.
  • April 2011
  • Article

Why Leaders Don't Learn from Success

By: Francesca Gino and Gary P. Pisano
We argue that for a variety of psychological reasons, it is often much harder for leaders and organizations to learn from success than to learn from failure. Success creates three kinds of traps that often impede deep learning. The first is attribution error or the... View Details
Keywords: Learning; Innovation and Management; Leadership; Failure; Success; Performance Evaluation; Prejudice and Bias
Citation
Find at Harvard
Related
Gino, Francesca, and Gary P. Pisano. "Why Leaders Don't Learn from Success." Harvard Business Review 89, no. 4 (April 2011): 68–74.
  • 06 Aug 2007
  • Research & Ideas

High Hills, Deep Poverty: Explaining Civil War in Nepal

Civil wars have been the dominant form of conflict around the world since World War II, resulting in approximately 20 million deaths. But it's not just sociologists who are diving into the roots of conflict. Increasingly, economists are examining these events to View Details
Keywords: by Martha Lagace
  • 15 Nov 2006
  • Research & Ideas

Lessons Not Learned About Innovation

be rediscovered in each managerial generation (about every six years) as a fundamental way to enable new growth. But each generation seems to have forgotten or never learned the mistakes of the past, so we see classic traps repeated over... View Details
Keywords: by Sean Silverthorne
  • May 2022 (Revised July 2022)
  • Case

The Voice War Continues: Hey Google vs. Alexa vs. Siri in 2022

By: David B. Yoffie and Daniel Fisher
In 2022, after five years of pursuing a new "AI-first" strategy, Google had captured a sizeable share of the American and global markets for voice assistants. Google Assistant was used by hundreds of millions of users around the world, but Amazon retained the largest... View Details
Keywords: Strategy; Artificial Intelligence; Deep Learning; Voice Assistants; Smart Home; Market Share; Globalized Markets and Industries; Competitive Strategy; Digital Platforms; AI and Machine Learning; Technology Industry; United States
Citation
Educators
Purchase
Related
Yoffie, David B., and Daniel Fisher. "The Voice War Continues: Hey Google vs. Alexa vs. Siri in 2022." Harvard Business School Case 722-462, May 2022. (Revised July 2022.)
  • August 2022
  • Article

What Makes a Good Image? Airbnb Demand Analytics Leveraging Interpretable Image Features

By: Shunyuan Zhang, Dokyun Lee, Param Vir Singh and Kannan Srinivasan
We study how Airbnb property demand changed after the acquisition of verified images (taken by Airbnb’s photographers) and explore what makes a good image for an Airbnb property. Using deep learning and difference-in-difference analyses on an Airbnb panel dataset... View Details
Keywords: Sharing Economy; Airbnb; Property Demand; Computer Vision; Deep Learning; Image Feature Extraction; Content Engineering; Property; Marketing; Demand and Consumers
Citation
SSRN
Find at Harvard
Related
Zhang, Shunyuan, Dokyun Lee, Param Vir Singh, and Kannan Srinivasan. "What Makes a Good Image? Airbnb Demand Analytics Leveraging Interpretable Image Features." Management Science 68, no. 8 (August 2022): 5644–5666.
  • Teaching Interest

Interpretability and Explainability in Machine Learning

By: Himabindu Lakkaraju

As machine learning models are increasingly being employed to aid decision makers in high-stakes settings such as healthcare and criminal justice, it is important to ensure that the decision makers correctly understand and consequent trust the functionality of these... View Details

  • 05 Jul 2006
  • Working Paper Summaries

Deep Links: Business School Students’ Perceptions of the Role of Law and Ethics in Business

Keywords: by Constance E. Bagley, Gavin Clarkson & Rachel Power; Legal Services
  • Article

Detecting Adversarial Attacks via Subset Scanning of Autoencoder Activations and Reconstruction Error

By: Celia Cintas, Skyler Speakman, Victor Akinwande, William Ogallo, Komminist Weldemariam, Srihari Sridharan and Edward McFowland III
Reliably detecting attacks in a given set of inputs is of high practical relevance because of the vulnerability of neural networks to adversarial examples. These altered inputs create a security risk in applications with real-world consequences, such as self-driving... View Details
Keywords: Autoencoder Networks; Pattern Detection; Subset Scanning; Computer Vision; Statistical Methods And Machine Learning; Machine Learning; Deep Learning; Data Mining; Big Data; Large-scale Systems; Mathematical Methods; Analytics and Data Science
Citation
Read Now
Related
Cintas, Celia, Skyler Speakman, Victor Akinwande, William Ogallo, Komminist Weldemariam, Srihari Sridharan, and Edward McFowland III. "Detecting Adversarial Attacks via Subset Scanning of Autoencoder Activations and Reconstruction Error." Proceedings of the International Joint Conference on Artificial Intelligence 29th (2020).
  • November 2024
  • Supplement

AlphaGo (C): Birth of a New Intelligence

By: Shikhar Ghosh and Shweta Bagai
This case, the final of a three-part series, explores DeepMind's pivotal transition from mastering games to solving real-world scientific challenges. In December 2020, DeepMind's AI system AlphaFold 2 achieved a breakthrough by solving protein folding—a 50-year-old... View Details
Keywords: Autonomy; Deep Learning; Drug Discovery; Healthcare Innovation; Neural Networks; Scientific Research; Technology Startup; AI and Machine Learning; Technological Innovation; Research and Development; Business Model; Business Strategy; Open Source Distribution; Technology Industry; United States
Citation
Purchase
Related
Ghosh, Shikhar, and Shweta Bagai. "AlphaGo (C): Birth of a New Intelligence." Harvard Business School Supplement 825-075, November 2024.
  • 05 Feb 2015
  • Research & Ideas

How New BofA Executives Learn its ’Deep Smarts’

Company's Deep Smarts offers a roadmap for ensuring that critical knowledge remains in the organization. This excerpt focuses on the executive onboarding practice at Bank of America. Dorothy Leonard is the William J. Abernathy Professor... View Details
Keywords: Re: Dorothy A. Leonard; Banking
  • 1
  • 2
  • …
  • 13
  • 14
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.