Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (1,194) Arrow Down
Filter Results: (1,194) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,194)
    • People  (1)
    • News  (232)
    • Research  (675)
    • Events  (17)
    • Multimedia  (8)
  • Faculty Publications  (560)

Show Results For

  • All HBS Web  (1,194)
    • People  (1)
    • News  (232)
    • Research  (675)
    • Events  (17)
    • Multimedia  (8)
  • Faculty Publications  (560)
Page 1 of 1,194 Results →
  • March 2022 (Revised January 2025)
  • Technical Note

Prediction & Machine Learning

By: Iavor I. Bojinov, Michael Parzen and Paul Hamilton
This note provides an introduction to machine learning for an introductory data science course. The note begins with a description of supervised, unsupervised, and reinforcement learning. Then, the note provides a brief explanation of the difference between traditional... View Details
Keywords: Machine Learning; Data Science; Learning; Analytics and Data Science; Performance Evaluation; AI and Machine Learning
Citation
Educators
Purchase
Related
Bojinov, Iavor I., Michael Parzen, and Paul Hamilton. "Prediction & Machine Learning." Harvard Business School Technical Note 622-101, March 2022. (Revised January 2025.)
  • TeachingInterests

Big Data Analytics and Machine Learning

Big data in the context of marketing, management, and innovation strategy. Machine Learning algorithms and tools. 
 View Details
  • 2019
  • Working Paper

Soul and Machine (Learning)

By: Davide Proserpio, John R. Hauser, Xiao Liu, Tomomichi Amano, Alex Burnap, Tong Guo, Dokyun Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu and Hema Yoganarasimhan
Machine learning is bringing us self-driving cars, improved medical diagnostics, and machine translation, but can it improve marketing decisions? It can. Machine learning models predict extremely well, are scalable to “big data,” and are a natural fit to rich media... View Details
Keywords: Machine Learning; Technological Innovation; Marketing; AI and Machine Learning
Citation
SSRN
Read Now
Related
Proserpio, Davide, John R. Hauser, Xiao Liu, Tomomichi Amano, Alex Burnap, Tong Guo, Dokyun Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu, and Hema Yoganarasimhan. "Soul and Machine (Learning)." Harvard Business School Working Paper, No. 20-036, September 2019.
  • 18 Nov 2016
  • Conference Presentation

Rawlsian Fairness for Machine Learning

By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of... View Details
Keywords: Machine Learning; Algorithms; Fairness; Decision Making; Mathematical Methods
Citation
Related
Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
  • Article

Soul and Machine (Learning)

By: Davide Proserpio, John R. Hauser, Xiao Liu, Tomomichi Amano, Burnap Alex, Tong Guo, Dokyun (DK) Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu and Hema Yoganarasimhan
Machine learning is bringing us self-driving cars, medical diagnoses, and language translation, but how can machine learning help marketers improve marketing decisions? Machine learning models predict extremely well, are scalable to “big data,” and are a natural fit to... View Details
Keywords: Machine Learning; Marketing Applications; Knowledge; Technological Innovation; Core Relationships; Marketing; Applications and Software
Citation
Find at Harvard
Read Now
Related
Proserpio, Davide, John R. Hauser, Xiao Liu, Tomomichi Amano, Burnap Alex, Tong Guo, Dokyun (DK) Lee, Randall Lewis, Kanishka Misra, Eric Schwarz, Artem Timoshenko, Lilei Xu, and Hema Yoganarasimhan. "Soul and Machine (Learning)." Marketing Letters 31, no. 4 (December 2020): 393–404.
  • April 2020
  • Article

Regulatory Oversight, Causal Inference, and Safe and Effective Health Care Machine Learning

By: Ariel Dora Stern and W. Nicholson Price, II
In recent years, the applications of Machine Learning (ML) in the health care delivery setting have grown to become both abundant and compelling. Regulators have taken notice of these developments and the U.S. Food and Drug Administration (FDA) has been engaging... View Details
Keywords: Machine Learning; Causal Inference; Health Care and Treatment; Safety; Governing Rules, Regulations, and Reforms
Citation
Find at Harvard
Read Now
Related
Stern, Ariel Dora, and W. Nicholson Price, II. "Regulatory Oversight, Causal Inference, and Safe and Effective Health Care Machine Learning." Biostatistics 21, no. 2 (April 2020): 363–367.
  • October 2022 (Revised December 2022)
  • Case

SMART: AI and Machine Learning for Wildlife Conservation

By: Brian Trelstad and Bonnie Yining Cao
Spatial Monitoring and Reporting Tool (SMART), a set of software and analytical tools designed for the purpose of wildlife conservation, had demonstrated significant improvements in patrol coverage, with some observed reductions in poaching and contributing to wildlife... View Details
Keywords: Business and Government Relations; Emerging Markets; Technology Adoption; Strategy; Management; Ethics; Social Enterprise; AI and Machine Learning; Analytics and Data Science; Natural Environment; Technology Industry; Cambodia; United States; Africa
Citation
Educators
Purchase
Related
Trelstad, Brian, and Bonnie Yining Cao. "SMART: AI and Machine Learning for Wildlife Conservation." Harvard Business School Case 323-036, October 2022. (Revised December 2022.)
  • August 2020
  • Article

Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation

By: Prithwiraj Choudhury, Evan Starr and Rajshree Agarwal
The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic... View Details
Keywords: Machine Learning; Bias; Human Capital; Management; Strategy
Citation
Find at Harvard
Read Now
Related
Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal. "Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation." Strategic Management Journal 41, no. 8 (August 2020): 1381–1411.
  • 2017
  • Working Paper

Machine Learning Methods for Strategy Research

By: Mike Horia Teodorescu
Numerous applications of machine learning have gained acceptance in the field of strategy and management research only during the last few years. Established uses span such diverse problems as strategic foreign investments, strategic resource allocation, systemic risk... View Details
Keywords: Machine Learning; Natural Language Processing; Classification; Decision Trees; Strategic Decisions; Strategy; Research; Information Technology
Citation
SSRN
Read Now
Related
Teodorescu, Mike Horia. "Machine Learning Methods for Strategy Research." Harvard Business School Working Paper, No. 18-011, August 2017. (Revised October 2017.)
  • 2019
  • Article

An Empirical Study of Rich Subgroup Fairness for Machine Learning

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Keywords: Machine Learning; Fairness; AI and Machine Learning
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
  • 14 Mar 2023
  • Cold Call Podcast

Can AI and Machine Learning Help Park Rangers Prevent Poaching?

Keywords: Re: Brian L. Trelstad; Computer; Information Technology; Technology
  • Article

Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI

By: Tsedal Neeley and Paul Leonardi
Learning new technological skills is essential for digital transformation. But it is not enough. Employees must be motivated to use their skills to create new opportunities. They need a digital mindset: a set of attitudes and behaviors that enable people and... View Details
Keywords: Machine Learning; AI; Information Technology; Transformation; Competency and Skills; Employees; Technology Adoption; Leading Change; Digital Transformation
Citation
Find at Harvard
Read Now
Purchase
Related
Neeley, Tsedal, and Paul Leonardi. "Developing a Digital Mindset: How to Lead Your Organization into the Age of Data, Algorithms, and AI." S22032. Harvard Business Review 100, no. 3 (May–June 2022): 50–55.
  • August 2020 (Revised September 2020)
  • Technical Note

Assessing Prediction Accuracy of Machine Learning Models

By: Michael W. Toffel, Natalie Epstein, Kris Ferreira and Yael Grushka-Cockayne
The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools... View Details
Keywords: Machine Learning; Statistics; Econometric Analyses; Experimental Methods; Data Analysis; Data Analytics; Forecasting and Prediction; Analytics and Data Science; Analysis; Mathematical Methods
Citation
Educators
Purchase
Related
Toffel, Michael W., Natalie Epstein, Kris Ferreira, and Yael Grushka-Cockayne. "Assessing Prediction Accuracy of Machine Learning Models." Harvard Business School Technical Note 621-045, August 2020. (Revised September 2020.)
  • Article

Adaptive Machine Unlearning

By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees... View Details
Keywords: Machine Learning; AI and Machine Learning
Citation
Read Now
Related
Gupta, Varun, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. "Adaptive Machine Unlearning." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
  • January 2021
  • Article

Machine Learning for Pattern Discovery in Management Research

By: Prithwiraj Choudhury, Ryan Allen and Michael G. Endres
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post-hoc analysis of regression results to detect... View Details
Keywords: Machine Learning; Supervised Machine Learning; Induction; Abduction; Exploratory Data Analysis; Pattern Discovery; Decision Trees; Random Forests; Neural Networks; ROC Curve; Confusion Matrix; Partial Dependence Plots; AI and Machine Learning
Citation
Find at Harvard
Read Now
Related
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Strategic Management Journal 42, no. 1 (January 2021): 30–57.
  • 2022
  • Working Paper

Machine Learning Models for Prediction of Scope 3 Carbon Emissions

By: George Serafeim and Gladys Vélez Caicedo
For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In this paper, we train machine learning algorithms on 15... View Details
Keywords: Carbon Emissions; Climate Change; Environment; Carbon Accounting; Machine Learning; Artificial Intelligence; Digital; Data Science; Environmental Sustainability; Environmental Management; Environmental Accounting
Citation
SSRN
Read Now
Related
Serafeim, George, and Gladys Vélez Caicedo. "Machine Learning Models for Prediction of Scope 3 Carbon Emissions." Harvard Business School Working Paper, No. 22-080, June 2022.
  • Article

Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles

By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural... View Details
Keywords: CEOs; Communication Style; Machine Learning; Spoken Communication; Nonverbal Communication; Personal Characteristics; Analysis; Performance
Citation
Find at Harvard
Related
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Strategic Management Journal 40, no. 11 (November 2019): 1705–1732.
  • Article

Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications

By: Daniel Elsner, Pouya Aleatrati Khosroshahi, Alan MacCormack and Robert Lagerström
Existing application performance management (APM) solutions lack robust anomaly detection capabilities and root cause analysis techniques that do not require manual efforts and domain knowledge. In this paper, we develop a density-based unsupervised machine learning... View Details
Keywords: Big Data; Data Science And Analytics Management; Governance And Compliance; Organizational Systems And Technology; Anomaly Detection; Application Performance Management; Machine Learning; Enterprise Architecture; Analytics and Data Science
Citation
Read Now
Related
Elsner, Daniel, Pouya Aleatrati Khosroshahi, Alan MacCormack, and Robert Lagerström. "Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications." Proceedings of the Hawaii International Conference on System Sciences 52nd (2019): 5827–5836.
  • 2020
  • Working Paper

Machine Learning for Pattern Discovery in Management Research

By: Prithwiraj Choudhury
Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used as an observation for further inductive or abductive research, but should not be treated as the result of a... View Details
Keywords: Machine Learning; Theory Building; Induction; Decision Trees; Random Forests; K-nearest Neighbors; Neural Network; P-hacking; Analytics and Data Science; Analysis
Citation
SSRN
Related
Choudhury, Prithwiraj, Ryan Allen, and Michael G. Endres. "Machine Learning for Pattern Discovery in Management Research." Harvard Business School Working Paper, No. 19-032, September 2018. (Revised June 2020.)
  • October 2023 (Revised June 2024)
  • Case

ReUp Education: Can AI Help Learners Return to College?

By: Kris Ferreira, Christopher Thomas Ryan and Sarah Mehta
Founded in 2015, ReUp Education helps “stopped out students”—learners who have stopped making progress towards graduation—achieve their college completion goals. The company relies on a team of success coaches to engage with learners and help them reenroll. In 2019,... View Details
Keywords: AI; Algorithms; Machine Learning; Edtech; Education Technology; Analysis; Higher Education; AI and Machine Learning; Customization and Personalization; Failure; Education Industry; Technology Industry; United States
Citation
Educators
Purchase
Related
Ferreira, Kris, Christopher Thomas Ryan, and Sarah Mehta. "ReUp Education: Can AI Help Learners Return to College?" Harvard Business School Case 624-007, October 2023. (Revised June 2024.)
  • 1
  • 2
  • …
  • 59
  • 60
  • →
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.