Filter Results:
(250)
Show Results For
- All HBS Web
(250)
- News (28)
- Research (153)
- Events (4)
- Multimedia (7)
- Faculty Publications (151)
Show Results For
- All HBS Web
(250)
- News (28)
- Research (153)
- Events (4)
- Multimedia (7)
- Faculty Publications (151)
- 2020
- Working Paper
Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach
By: Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Customer Value and Value Chain; Consumer Behavior; Analytics and Data Science; Mathematical Methods; Retail Industry
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Harvard Business School Working Paper, No. 19-091, February 2019. (Revised May 2020. Accepted at the Journal of Marketing Research.)
- 13 Apr 2016
- Research Event
What Does 'Diversity' Really Mean?
a beauty feature on the needs of women with different types of skin, showcasing a range of actresses of different backgrounds with large close-up shots. Holmes began to throw out some names, including Eva Mendes, Lucy Liu, and Alfre... View Details
Keywords: by Dina Gerdeman
- February 2024 (Revised February 2024)
- Teaching Note
Travelogo: Understanding Customer Journeys
By: Eva Ascarza and Ta-Wei Huang
Teaching Note for HBS Exercise 524-044. The exercise aims to teach students about 1) Customer Segmentation; and 2) constructing buying personas, 3) Get actionable insights from clickstream data. View Details
- November 2023 (Revised March 2024)
- Technical Note
Customer Data Privacy
By: Eva Ascarza and Ta-Wei Huang
This note provides an overview of the evolving landscape of customer data privacy in 2023. It highlights two pivotal aspects that make privacy a central concern for businesses: building and maintaining customer trust and navigating the intricate regulatory... View Details
Keywords: Customer Relationship Management; Governance Compliance; Governing Rules, Regulations, and Reforms; Risk and Uncertainty; Reputation; Trust; Information Management; Retail Industry; Technology Industry; Financial Services Industry; Telecommunications Industry; Europe; United States
Ascarza, Eva, and Ta-Wei Huang. "Customer Data Privacy." Harvard Business School Technical Note 524-005, November 2023. (Revised March 2024.)
- October 2021
- Article
Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach
By: Nicolas Padilla and Eva Ascarza
The success of Customer Relationship Management (CRM) programs ultimately depends on the firm's ability to understand consumers' preferences and precisely capture how these preferences may differ across customers. Only by understanding customer heterogeneity, firms can... View Details
Keywords: Customer Management; Targeting; Deep Exponential Families; Probabilistic Machine Learning; Cold Start Problem; Customer Relationship Management; Programs; Consumer Behavior; Analysis
Padilla, Nicolas, and Eva Ascarza. "Overcoming the Cold Start Problem of CRM Using a Probabilistic Machine Learning Approach." Journal of Marketing Research (JMR) 58, no. 5 (October 2021): 981–1006.
- July 2021 (Revised January 2022)
- Teaching Note
Amazon Shopper Panel: Paying Customers for Their Data
By: Eva Ascarza and Ayelet Israeli
Teaching Note for HBS Case No. 521-058. View Details
- September 2020 (Revised June 2023)
- Supplement
Spreadsheet Supplement to Artea Teaching Note
By: Eva Ascarza and Ayelet Israeli
Spreadsheet Supplement to Artea Teaching Note 521-041. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and... View Details
- September 2020 (Revised July 2022)
- Exercise
Artea (D): Discrimination through Algorithmic Bias in Targeting
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The... View Details
Keywords: Targeted Advertising; Discrimination; Algorithmic Data; Bias; Advertising; Race; Gender; Marketing; Diversity; Customer Relationship Management; Prejudice and Bias; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; Technology Industry; United States
Ascarza, Eva, and Ayelet Israeli. "Artea (D): Discrimination through Algorithmic Bias in Targeting." Harvard Business School Exercise 521-043, September 2020. (Revised July 2022.)
- Student-Profile
Ta-Wei "David" Huang
program. He began to look at faculty research interests at HBS and quickly realized that there was a great deal of overlap between his interests and the faculty at Harvard. He found the research of Eva Ascarza, Elie Ofek, and Shunyuan... View Details
- 2024
- Working Paper
Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization
This paper introduces Incrementality Representation Learning (IRL), a novel multitask representation learning framework that predicts heterogeneous causal effects of marketing interventions. By leveraging past experiments, IRL efficiently designs and targets... View Details
Keywords: Heterogeneous Treatment Effect; Multi-task Learning; Representation Learning; Personalization; Promotion; Deep Learning; Field Experiments; Customer Focus and Relationships; Customization and Personalization
Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli. "Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization." Harvard Business School Working Paper, No. 24-076, June 2024.
- December 2019 (Revised January 2022)
- Supplement
Othellonia: Growing a Mobile Game
- Article
The Perils of Proactive Churn Prevention Using Plan Recommendations: Evidence from a Field Experiment
By: Eva Ascarza, Raghuram Iyengar and Martin Schleicher
Facing the issue of increasing customer churn, many service firms have begun recommending pricing plans to their customers. One reason behind this type of retention campaign is that customers who subscribe to a plan suitable for them should be less likely to churn... View Details
Keywords: Churn/retention; Field Experiment; Pricing; Tariff/plan Choice; Targeting; Customer Relationship Management; Price; Performance Effectiveness
Ascarza, Eva, Raghuram Iyengar, and Martin Schleicher. "The Perils of Proactive Churn Prevention Using Plan Recommendations: Evidence from a Field Experiment." Journal of Marketing Research (JMR) 53, no. 1 (February 2016): 46–60.
- 01 Apr 2000
- News
Time to Vote in University Elections
Sales Operations Manager, BellSouth Business. Atlanta, GA. Eva M. Plaza, AB '80 cum laude; JD '84, Boalt Hall School of Law, University of California, Berkeley. Assistant Secretary for Fair Housing and Equal Opportunity, Department of... View Details
- July–August 2013
- Article
A Joint Model of Usage and Churn in Contractual Settings
By: Eva Ascarza and Bruce G.S. Hardie
As firms become more customer-centric, concepts such as customer equity come to the fore. Any serious attempt to quantify customer equity requires modeling techniques that can provide accurate multiperiod forecasts of customer behavior. Although a number of researchers... View Details
Keywords: Churn; Retention; Contractual Settings; Access Services; Hidden Markov Models; RFM; Latent Variable Models; Customer Value and Value Chain; Consumer Behavior
Ascarza, Eva, and Bruce G.S. Hardie. "A Joint Model of Usage and Churn in Contractual Settings." Marketing Science 32, no. 4 (July–August 2013): 570–590.
- 25 Aug 2022
- News
Labs Enable Large-scale Research
organizations, or society) by leveraging customer data fairly and transparently? HBS: Ayelet Israeli, Marvin Bower Associate Professor Eva Ascarza, Jakurski Family Associate Professor of Business Administration Digital Emotions Lab How... View Details
- July–August 2024
- Article
Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals
By: Ta-Wei Huang and Eva Ascarza
Firms are increasingly interested in developing targeted interventions for customers with the best response,
which requires identifying differences in customer sensitivity, typically through the conditional average treatment
effect (CATE) estimation. In theory, to... View Details
Keywords: Long-run Targeting; Heterogeneous Treatment Effect; Statistical Surrogacy; Customer Churn; Field Experiments; Consumer Behavior; Customer Focus and Relationships; AI and Machine Learning; Marketing Strategy
Huang, Ta-Wei, and Eva Ascarza. "Doing More with Less: Overcoming Ineffective Long-Term Targeting Using Short-Term Signals." Marketing Science 43, no. 4 (July–August 2024): 863–884.
- March 2024
- Case
Unintended Consequences of Algorithmic Personalization
By: Eva Ascarza and Ayelet Israeli
“Unintended Consequences of Algorithmic Personalization” (HBS No. 524-052) investigates algorithmic bias in marketing through four case studies featuring Apple, Uber, Facebook, and Amazon. Each study presents scenarios where these companies faced public criticism for... View Details
Keywords: Race; Gender; Marketing; Diversity; Customer Relationship Management; Prejudice and Bias; Customization and Personalization; Technology Industry; Retail Industry; United States
Ascarza, Eva, and Ayelet Israeli. "Unintended Consequences of Algorithmic Personalization." Harvard Business School Case 524-052, March 2024.
- October 2023 (Revised February 2024)
- Supplement
Managing Customer Retention at Teleko
By: Eva Ascarza and Ta-Wei Huang
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
- September 2020 (Revised July 2022)
- Supplement
Spreadsheet Supplement to Artea (B) and (C)
By: Eva Ascarza and Ayelet Israeli
Spreadsheet Supplement to "Artea (B): Including Customer-level Demographic Data" and "Artea (C): Potential Discrimination through Algorithmic Targeting" View Details