Filter Results:
(647)
Show Results For
- All HBS Web
(647)
- News (142)
- Research (416)
- Events (13)
- Multimedia (11)
- Faculty Publications (291)
Show Results For
- All HBS Web
(647)
- News (142)
- Research (416)
- Events (13)
- Multimedia (11)
- Faculty Publications (291)
- December 2018
- Case
Choosy
By: Jeffrey J. Bussgang and Julia Kelley
Founded in 2017, Choosy is a data-driven fashion startup that uses algorithms to identify styles trending on social media. After manufacturing similar items using a China-based supply chain, Choosy sells them to consumers through its website and social media pages.... View Details
Keywords: Artificial Intelligence; Algorithms; Machine Learning; Neural Networks; Instagram; Influencer; Fast Fashion; Design; Customer Satisfaction; Customer Focus and Relationships; Decision Making; Cost vs Benefits; Innovation and Invention; Brands and Branding; Product Positioning; Demand and Consumers; Supply Chain; Production; Logistics; Business Model; Expansion; Internet and the Web; Mobile and Wireless Technology; Digital Platforms; Social Media; Technology Industry; Fashion Industry; North and Central America; United States; New York (state, US); New York (city, NY)
- Article
Fast Subset Scan for Multivariate Spatial Biosurveillance
By: Daniel B. Neill, Edward McFowland III and Huanian Zheng
We present new subset scan methods for multivariate event detection in massive space-time datasets. We extend the recently proposed 'fast subset scan' framework from univariate to multivariate data, enabling computationally efficient detection of irregular space-time... View Details
Neill, Daniel B., Edward McFowland III, and Huanian Zheng. "Fast Subset Scan for Multivariate Spatial Biosurveillance." Statistics in Medicine 32, no. 13 (June 15, 2013): 2185–2208.
- 2021
- Working Paper
Invisible Primes: Fintech Lending with Alternative Data
By: Marco Di Maggio, Dimuthu Ratnadiwakara and Don Carmichael
We exploit anonymized administrative data provided by a major fintech platform to investigate whether using alternative data to assess borrowers’ creditworthiness results in broader credit access. Comparing actual outcomes of the fintech platform’s model to... View Details
Keywords: Fintech Lending; Alternative Data; Machine Learning; Algorithm Bias; Finance; Information Technology; Financing and Loans; Analytics and Data Science; Credit
Di Maggio, Marco, Dimuthu Ratnadiwakara, and Don Carmichael. "Invisible Primes: Fintech Lending with Alternative Data." Harvard Business School Working Paper, No. 22-024, October 2021.
- Research Summary
Overview
Professor MacKay combines theory and measurement to deliver new insights about price competition and consumer preferences. In current and published papers, his research addresses how strategic pricing decisions may be influenced by algorithms, long-term contracts,... View Details
- 2022
- Article
Dynamic Pricing Algorithms, Consumer Harm, and Regulatory Response
By: Alexander MacKay and Samuel N. Weinstein
Pricing algorithms are rapidly transforming markets, from ride-sharing apps, to air travel, to online retail. Regulators and scholars have watched this development with a wary eye. Their focus so far has been on the potential for pricing algorithms to facilitate... View Details
Keywords: Competition Policy; Regulation; Algorithmic Pricing; Dynamic Pricing; Economics; Law And Economics; Law And Regulation; Consumer Protection; Antitrust Law; Industrial Organization; Antitrust Issues And Policies; Technological Change: Choices And Consequences; Competition; Policy; Price; Governing Rules, Regulations, and Reforms; Microeconomics; Duopoly and Oligopoly; Law
MacKay, Alexander, and Samuel N. Weinstein. "Dynamic Pricing Algorithms, Consumer Harm, and Regulatory Response." Washington University Law Review 100, no. 1 (2022): 111–174. (Direct download.)
- 2019
- Article
Big Data
By: John A. Deighton
Big data is defined and distinguished from a mere moment in the “ancient quest to measure.” Specific discontinuities in the practice of information science are identified that, the paper argues, have large consequences for the social order. The infrastructure that runs... View Details
Keywords: Big Data; Digital Infrastructure; Privacy; Algorithm; Data Generators; Marketplace Icon; Analytics and Data Science; Infrastructure; Power and Influence; Society
Deighton, John A. "Big Data." Consumption, Markets & Culture 22, no. 1 (2019): 68–73.
- Research Summary
Overview
My research uses a combination of lab experiments and empirical methods to understand how organizations can design their operations in order to inspire trust. View Details
- October 2023
- Article
Matching Mechanisms for Refugee Resettlement
By: David Delacrétaz, Scott Duke Kominers and Alexander Teytelboym
Current refugee resettlement processes account for neither the preferences of refugees nor the priorities of hosting communities. We introduce a new framework for matching with multidimensional knapsack constraints that captures the (possibly multidimensional) sizes of... View Details
Keywords: Refugee Resettlement; Matching; Matching Markets; Matching Platform; Matching With Contracts; Algorithms; Refugees; Market Design
Delacrétaz, David, Scott Duke Kominers, and Alexander Teytelboym. "Matching Mechanisms for Refugee Resettlement." American Economic Review 113, no. 10 (October 2023): 2689–2717.
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea... View Details
Keywords: Algorithm Bias; Algorithmic Data; Race And Ethnicity; Experimentation; Promotion; Marketing And Society; Big Data; Privacy; Data-driven Management; Data Analysis; Data Analytics; E-Commerce Strategy; Discrimination; Targeted Advertising; Targeted Policies; Pricing Algorithms; A/B Testing; Ethical Decision Making; Customer Base Analysis; Customer Heterogeneity; Coupons; Marketing; Race; Gender; Diversity; Customer Relationship Management; Marketing Communications; Advertising; Decision Making; Ethics; E-commerce; Analytics and Data Science; Retail Industry; Apparel and Accessories Industry; United States
- October 2017
- Case
Quantopian: A New Model for Active Management
Keywords: Big Data; Hedge Fund; Crowdsourcing; Investment Fund; Quantitative Hedge Fun; Algorithmic Data; Analytics and Data Science
Fleiss, Sara, Adi Sunderam, Luis M. Viceira, and Caitlin Carmichael. "Quantopian: A New Model for Active Management." Harvard Business School Case 218-046, October 2017.
- January 2021 (Revised March 2021)
- Case
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Jill Avery, Ayelet Israeli and Emma von Maur
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Preference Prediction; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
Avery, Jill, Ayelet Israeli, and Emma von Maur. "THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)." Harvard Business School Case 521-070, January 2021. (Revised March 2021.)
- October 2021 (Revised June 2022)
- Case
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; AI; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Israeli, Ayelet. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Case 522-046, October 2021. (Revised June 2022.)
- 05 May 2022
- HBS Seminar
Caleb Kwon, Harvard Business School
- 2023
- Working Paper
Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection
By: Edward McFowland III, Sriram Somanchi and Daniel B. Neill
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention’s effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides... View Details
Keywords: Causal Inference; Program Evaluation; Algorithms; Distributional Average Treatment Effect; Treatment Effect Subset Scan; Heterogeneous Treatment Effects
McFowland III, Edward, Sriram Somanchi, and Daniel B. Neill. "Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection." Working Paper, 2023.
- Teaching Interest
Overview
Paul is primarily interested in teaching data science to management students through the case method. This includes technical topics (programming and statistics) as well as higher-level management issues (digital transformation, data governance, etc.) As a research... View Details
Keywords: A/B Testing; AI; AI Algorithms; AI Creativity; Algorithm; Algorithm Bias; Algorithmic Bias; Algorithmic Fairness; Algorithms; Analytics; Application Program Interface; Artificial Intelligence; Causality; Causal Inference; Computing; Computers; Data Analysis; Data Analytics; Data Architecture; Data As A Service; Data Centers; Data Governance; Data Labeling; Data Management; Data Manipulation; Data Mining; Data Ownership; Data Privacy; Data Protection; Data Science; Data Science And Analytics Management; Data Scientists; Data Security; Data Sharing; Data Strategy; Data Visualization; Database; Data-driven Decision-making; Data-driven Management; Data-driven Operations; Datathon; Economics Of AI; Economics Of Innovation; Economics Of Information System; Economics Of Science; Forecast; Forecast Accuracy; Forecasting; Forecasting And Prediction; Information Technology; Machine Learning; Machine Learning Models; Prediction; Prediction Error; Predictive Analytics; Predictive Models; Analysis; AI and Machine Learning; Analytics and Data Science; Applications and Software; Digital Transformation; Information Management; Digital Strategy; Technology Adoption
- 26 Apr 2023
- In Practice
Is AI Coming for Your Job?
possibilities and chart a path for the future using data, algorithms, AI, and machine learning. AI serves to augment or improve human performance. When computational and machine-learning algorithms perform an ever-increasing number of... View Details
- May 2021 (Revised February 2024)
- Teaching Note
THE YES: Reimagining the Future of E-Commerce with Artificial Intelligence (AI)
By: Ayelet Israeli and Jill Avery
THE YES, a multi-brand shopping app launched in May 2020 offered a new type of buying experience for women’s fashion, driven by a sophisticated algorithm that used data science and machine learning to create and deliver a personalized store for every shopper, based on... View Details
Keywords: Data; Data Analytics; Artificial Intelligence; AI; AI Algorithms; AI Creativity; Fashion; Retail; Retail Analytics; E-Commerce Strategy; Platform; Platforms; Big Data; Preference Elicitation; Predictive Analytics; App Development; "Marketing Analytics"; Advertising; Mobile App; Mobile Marketing; Apparel; Online Advertising; Referral Rewards; Referrals; Female Ceo; Female Entrepreneur; Female Protagonist; Analytics and Data Science; Analysis; Creativity; Marketing Strategy; Brands and Branding; Consumer Behavior; Demand and Consumers; Forecasting and Prediction; Marketing Channels; Digital Marketing; Internet and the Web; Mobile and Wireless Technology; AI and Machine Learning; E-commerce; Digital Platforms; Fashion Industry; Retail Industry; Apparel and Accessories Industry; Consumer Products Industry; United States
- 24 Jul 2023
- Research & Ideas
Part-Time Employees Want More Hours. Can Companies Tap This ‘Hidden’ Talent Pool?
many such workers are caregivers, excluded from full-time jobs because short-sighted employers don’t offer them the flexibility they need. Filtered out by hiring algorithms due to employment gaps or other hiring “red flags,” these willing... View Details
Keywords: by Kara Baskin
Kris Johnson Ferreira
Kris Ferreira is the Edgerley Family Associate Professor of Business Administration in the Technology and Operations Management (TOM) Unit. She teaches the Supply Chain Management course in the MBA elective curriculum and analytics in numerous Executive Education... View Details
Keywords: retailing