Filter Results:
(888)
Show Results For
- All HBS Web
(888)
- People (1)
- News (155)
- Research (564)
- Events (10)
- Multimedia (3)
- Faculty Publications (466)
Show Results For
- All HBS Web
(888)
- People (1)
- News (155)
- Research (564)
- Events (10)
- Multimedia (3)
- Faculty Publications (466)
- May 2024
- Article
The Health Risks of Generative AI-Based Wellness Apps
By: Julian De Freitas and G. Cohen
Artifcial intelligence (AI)-enabled chatbots are increasingly being used to
help people manage their mental health. Chatbots for mental health and
particularly ‘wellness’ applications currently exist in a regulatory ‘gray area’.
Indeed, most generative AI-powered... View Details
Keywords: AI and Machine Learning; Well-being; Governing Rules, Regulations, and Reforms; Applications and Software
De Freitas, Julian, and G. Cohen. "The Health Risks of Generative AI-Based Wellness Apps." Nature Medicine 30, no. 5 (May 2024): 1269–1275.
- July 2024
- Article
How Artificial Intelligence Constrains Human Experience
By: A. Valenzuela, S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino and K. Wertenbroch
Many consumption decisions and experiences are digitally mediated. As a consequence, consumer behavior is increasingly the joint product of human psychology and ubiquitous algorithms (Braun et al. 2024; cf. Melumad et al. 2020). The coming of age of Large Language... View Details
Keywords: Large Language Model; User Experience; AI and Machine Learning; Consumer Behavior; Technology Adoption; Risk and Uncertainty; Cost vs Benefits
Valenzuela, A., S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino, and K. Wertenbroch. "How Artificial Intelligence Constrains Human Experience." Journal of the Association for Consumer Research 9, no. 3 (July 2024): 241–256.
- February 2022 (Revised November 2022)
- Case
Nuritas
By: Mitchell Weiss, Satish Tadikonda, Vincent Dessain and Emer Moloney
Nora Khaldi had built a technology “to unlock the power of nature” in the service of extending human lifespan and improving health, and now in April 2020 was debating telling her Board of Directors she wanted to put on ice some of her discoveries. Nuritas, the company... View Details
Keywords: Cash Burn; Cash Flow Analysis; Pharmaceutical Companies; Founder; Artificial Intelligence; AI; Entrepreneurship; Health Testing and Trials; Health Care and Treatment; Decision Making; Market Entry and Exit; AI and Machine Learning; Pharmaceutical Industry
Weiss, Mitchell, Satish Tadikonda, Vincent Dessain, and Emer Moloney. "Nuritas." Harvard Business School Case 822-080, February 2022. (Revised November 2022.)
- September 2023
- Case
Super Quantum: Using Artificial Intelligence to Transform Asset Management (A)
By: Feng Zhu and Kerry Herman
Dr. Zhang, CEO of Super Quantum, an AI-driven hedge fund, is considering an investor’s request to withdraw their funds as the markets experience volatility. Should he pull the investor’s funds? View Details
Keywords: AI and Machine Learning; Volatility; Financial Markets; Investment Funds; Decision Choices and Conditions; Financial Services Industry
Zhu, Feng, and Kerry Herman. "Super Quantum: Using Artificial Intelligence to Transform Asset Management (A)." Harvard Business School Case 624-027, September 2023.
- Web
Data Science for Managers 2 - Course Catalog
wrangle” (collect and clean data that suit their purposes) and expand their machine learning repertoire to include gradient boosting, neural networks, unsupervised algorithms and natural language processing.... View Details
- June 2024 (Revised September 2024)
- Case
Driving Scale with Otto
By: Rebecca Karp, David Allen and Annelena Lobb
This case asks how startup founders make scaling decisions in light of their priorities for their business and for themselves. Otto was a technology company that applied artificial intelligence technology to sales. It deployed natural language processing to find sales... View Details
Keywords: Artificial Intelligence; Natural Language Processing; B2B; B2B Innovation; Scaling; Scaling Tech Ventures; Business Startups; AI and Machine Learning; Finance; Sales; Business Strategy; Growth and Development Strategy; Entrepreneurship; Information Technology Industry; United States; Cambridge; New York (city, NY); Spain
Karp, Rebecca, David Allen, and Annelena Lobb. "Driving Scale with Otto." Harvard Business School Case 724-407, June 2024. (Revised September 2024.)
- June 2020
- Article
Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure
By: Omar Isaac Asensio, Kevin Alvarez, Arielle Dror, Emerson Wenzel, Catharina Hollauer and Sooji Ha
By displacing gasoline and diesel fuels, electric cars and fleets reduce emissions from the transportation sector, thus offering important public health benefits. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to... View Details
Keywords: Environmental Sustainability; Transportation; Infrastructure; Behavior; AI and Machine Learning; Demand and Consumers
Asensio, Omar Isaac, Kevin Alvarez, Arielle Dror, Emerson Wenzel, Catharina Hollauer, and Sooji Ha. "Real-time Data from Mobile Platforms to Evaluate Sustainable Transportation Infrastructure." Nature Sustainability 3, no. 6 (June 2020): 463–471.
- March 2022
- Article
Winner Takes All? Tech Clusters, Population Centers, and the Spatial Transformation of U.S. Invention
By: Brad Chattergoon and William R. Kerr
U.S. invention has become increasingly concentrated around major tech centers since the 1970s, with implications for how much cities across the country share in concomitant local benefits. Is invention becoming a winner-takes-all race? We explore the rising spatial... View Details
Keywords: Clusters; Invention; Agglomeration; Artificial Intelligence; Innovation and Invention; Patents; Applications and Software; Industry Clusters; AI and Machine Learning
Chattergoon, Brad, and William R. Kerr. "Winner Takes All? Tech Clusters, Population Centers, and the Spatial Transformation of U.S. Invention." Art. 104418. Research Policy 51, no. 2 (March 2022).
- Web
Flatiron School: Reflections from Summer 2020 - Recruiting
analyzing its marketing and the sales data. NOTE: Full list of client partners included Calendly, Branch Furniture, Coconut Cartel, Halen Brands, OWYN, Birchbox, Young Invincibles, Color Camp, Women 2.0 and Casper. WHAT WERE YOUR GOALS FOR THE SUMMER? Rocio Wu (MBA... View Details
- March 2024 (Revised May 2024)
- Case
Amperity: First-Party Data at a Crossroads
By: Elie Ofek, Hema Yoganarasimhan and Alexis Lefort
In the summer of 2023, Amperity management was facing a critical decision on its future direction. Given the dramatic changes occurring within the digital advertising ecosystem, as concerns over consumer privacy placed limits on the ability to engage in third-party... View Details
Keywords: AI and Machine Learning; Technology Adoption; Business Strategy; Digital Marketing; Price; Product; Business or Company Management; Advertising Industry
Ofek, Elie, Hema Yoganarasimhan, and Alexis Lefort. "Amperity: First-Party Data at a Crossroads." Harvard Business School Case 524-017, March 2024. (Revised May 2024.)
- 2021
- Chapter
Building Small Business Utopia: How Artificial Intelligence and Big Data Can Increase Small Business Success
By: Karen G. Mills and Annie Dang
Small business lending has remained unchanged for decades, laden with frictions and barriers that prevent many small businesses from accessing the capital they need to succeed. Financial technology, or “fintech,” promises to change this trajectory. In 2010, new fintech... View Details
Keywords: Big Data; Fintech; Artificial Intelligence; Small Business; Financing and Loans; Capital; Success; AI and Machine Learning; Analytics and Data Science
Mills, Karen G., and Annie Dang. "Building Small Business Utopia: How Artificial Intelligence and Big Data Can Increase Small Business Success." In Big Data in Small Business, edited by Carsten Lund Pedersen, Adam Lindgreen, Thomas Ritter, and Torsten Ringberg. Edward Elgar Publishing, 2021.
- Forthcoming
- Article
Disclosure, Humanizing, and Contextual Vulnerability of Generative AI Chatbots
By: Julian De Freitas and I. Glenn Cohen
In the wake of recent advancements in generative AI, regulatory bodies are trying to keep pace. One key decision is whether to require app makers to disclose the use of generative AI-powered chatbots in their products. We suggest that some generative AI-based chatbots... View Details
- 04 Sep 2019
- News
Advancing Diagnostics that Can Save Lives
the lab. In 2016 Lee and four Harvard cofounders launched DZD to apply genome sequencing and machine learning to the problem of growing antibiotic resistance. Their technology helps doctors diagnose... View Details
Keywords: Susan Young
- February 6, 2024
- Article
Find the AI Approach That Fits the Problem You’re Trying to Solve
By: George Westerman, Sam Ransbotham and Chiara Farronato
AI moves quickly, but organizations change much more slowly. What works in a lab may be wrong for your company right now. If you know the right questions to ask, you can make better decisions, regardless of how fast technology changes. You can work with your technical... View Details
Keywords: AI and Machine Learning; Organizational Change and Adaptation; Technological Innovation; Analytics and Data Science
Westerman, George, Sam Ransbotham, and Chiara Farronato. "Find the AI Approach That Fits the Problem You’re Trying to Solve." Harvard Business Review (website) (February 6, 2024).
- 2023
- Article
Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten
By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
The Right to Explanation and the Right to be Forgotten are two important principles outlined to regulate algorithmic decision making and data usage in real-world applications. While the right to explanation allows individuals to request an actionable explanation for an... View Details
Keywords: Analytics and Data Science; AI and Machine Learning; Decision Making; Governing Rules, Regulations, and Reforms
Lakkaraju, Himabindu, Satyapriya Krishna, and Jiaqi Ma. "Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten." Proceedings of the International Conference on Machine Learning (ICML) 40th (2023): 17808–17826.
- 2022
- Working Paper
The Regulation of Medical AI: Policy Approaches, Data, and Innovation Incentives
By: Ariel Dora Stern
For those who follow health and technology news, it is difficult to go more than a few days without reading about a compelling new application of Artificial Intelligence (AI) to health care. AI has myriad applications in medicine and its adjacent industries, with... View Details
Keywords: AI and Machine Learning; Health Care and Treatment; Governing Rules, Regulations, and Reforms; Technological Innovation; Medical Devices and Supplies Industry
Stern, Ariel Dora. "The Regulation of Medical AI: Policy Approaches, Data, and Innovation Incentives." NBER Working Paper Series, No. 30639, December 2022.
- February 2022
- Teaching Note
Borusan CAT: Monetizing Prediction in the Age of AI
By: Navid Mojir
Teaching Note for HBS Case No. 521-053. View Details
- Student-Profile
Ta-Wei "David" Huang
management and using causal inference / machine learning tools to solve marketing problems.” It was this motivation that led him to pursue a Ph.D. Initially, David’s familiarity with HBS was limited to the... View Details
- February 2024
- Teaching Note
TimeCredit
By: Emanuele Colonnelli, Raymond Kluender and Shai Benjamin Bernstein
Teaching Note for HBS Case No. 824-139. TimeCredit is an artificial intelligence (AI) startup that is developing large language models (LLMs) to generate accounting memos. The case follows Ndonga Sagnia, a Gambian Harvard Business School MBA student with an accounting... View Details
- September 17, 2021
- Article
AI Can Help Address Inequity—If Companies Earn Users' Trust
By: Shunyuan Zhang, Kannan Srinivasan, Param Singh and Nitin Mehta
While companies may spend a lot of time testing models before launch, many spend too little time considering how they will work in the wild. In particular, they fail to fully consider how rates of adoption can warp developers’ intent. For instance, Airbnb launched a... View Details
Keywords: Artificial Intelligence; Algorithmic Bias; Technological Innovation; Perception; Diversity; Equality and Inequality; Trust; AI and Machine Learning
Zhang, Shunyuan, Kannan Srinivasan, Param Singh, and Nitin Mehta. "AI Can Help Address Inequity—If Companies Earn Users' Trust." Harvard Business Review Digital Articles (September 17, 2021).