Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results: (98) Arrow Down
Filter Results: (98) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (178)
    • News  (43)
    • Research  (98)
    • Events  (3)
    • Multimedia  (6)
  • Faculty Publications  (78)

Show Results For

  • All HBS Web  (178)
    • News  (43)
    • Research  (98)
    • Events  (3)
    • Multimedia  (6)
  • Faculty Publications  (78)
← Page 3 of 98 Results →
Sort by

Are you looking for?

→Search All HBS Web
  • 03 May 2023
  • Research & Ideas

Why Confronting Racism in AI 'Creates a Better Future for All of Us'

people in the room to guess what prompts he had provided to the AI tool DALL-E2 to create the image. People in the audience were stumped. After about 40 seconds, Turner—a visiting fellow at HBS’s Institute for the Study of Business in... View Details
Keywords: by Barbara DeLollis
  • 13 Nov 2019
  • Research & Ideas

Don't Turn Your Marketing Function Over to AI Just Yet

how new products or services would perform at various prices or with different characteristics. The machine learning algorithms that might power such a device are, at least for now, incapable of producing such promising results. But what... View Details
Keywords: by Kristen Senz
  • Teaching Interest

Overview

Paul is primarily interested in teaching data science to management students through the case method. This includes technical topics (programming and statistics) as well as higher-level management issues (digital transformation, data governance, etc.) As a research... View Details
Keywords: A/B Testing; AI; AI Algorithms; AI Creativity; Algorithm; Algorithm Bias; Algorithmic Bias; Algorithmic Fairness; Algorithms; Analytics; Application Program Interface; Artificial Intelligence; Causality; Causal Inference; Computing; Computers; Data Analysis; Data Analytics; Data Architecture; Data As A Service; Data Centers; Data Governance; Data Labeling; Data Management; Data Manipulation; Data Mining; Data Ownership; Data Privacy; Data Protection; Data Science; Data Science And Analytics Management; Data Scientists; Data Security; Data Sharing; Data Strategy; Data Visualization; Database; Data-driven Decision-making; Data-driven Management; Data-driven Operations; Datathon; Economics Of AI; Economics Of Innovation; Economics Of Information System; Economics Of Science; Forecast; Forecast Accuracy; Forecasting; Forecasting And Prediction; Information Technology; Machine Learning; Machine Learning Models; Prediction; Prediction Error; Predictive Analytics; Predictive Models; Analysis; AI and Machine Learning; Analytics and Data Science; Applications and Software; Digital Transformation; Information Management; Digital Strategy; Technology Adoption
  • November 2024 (Revised January 2025)
  • Case

MiDAS: Automating Unemployment Benefits

By: Shikhar Ghosh and Shweta Bagai
In 2015, the state of Michigan considered whether to nominate its Michigan Integrated Data Automated System (MiDAS) for a prestigious state technology award. Launched in 2013 amid severe budget pressures, the $47 million automated fraud detection system was designed to... View Details
Keywords: Artificial Intelligence; AI; Machine Learning Models; Algorithmic Data; Automation; Benefits; Compensation; Cost Reduction; Government; Fraud; Government Technology; Public Sector; Systems; Systems Integration; Unemployment Insurance; Waste Heat Recovery; AI and Machine Learning; Government Administration; Insurance; Decision Making; Digital Transformation; Employment; Public Administration Industry; United States; Michigan
Citation
Educators
Purchase
Related
Ghosh, Shikhar, and Shweta Bagai. "MiDAS: Automating Unemployment Benefits." Harvard Business School Case 825-100, November 2024. (Revised January 2025.)
  • October 2021 (Revised March 2022)
  • Supplement

PittaRosso: Artificial Intelligence-Driven Pricing and Promotion

By: Ayelet Israeli and Fabrizio Fantini
PittaRosso, a traditional Italian shoe retailer, is implementing an AI system to provide pricing and promotion recommendations. The system allows them to implement changes that would affect both the top of funnel and bottom of funnel activities for the company: once... View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; Retail Industry; Italy
Citation
Purchase
Related
Israeli, Ayelet, and Fabrizio Fantini. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Spreadsheet Supplement 522-710, October 2021. (Revised March 2022.)
  • 2021
  • Working Paper

Time Dependency, Data Flow, and Competitive Advantage

By: Ehsan Valavi, Joel Hestness, Marco Iansiti, Newsha Ardalani, Feng Zhu and Karim R. Lakhani
Data is fundamental to machine learning-based products and services and is considered strategic due to its externalities for businesses, governments, non-profits, and more generally for society. It is renowned that the value of organizations (businesses, government... View Details
Keywords: Economics Of AI; Value Of Data; Perishability; Time Dependency; Flow Of Data; Data Strategy; Analytics and Data Science; Value; Strategy; Competitive Advantage
Citation
SSRN
Read Now
Related
Valavi, Ehsan, Joel Hestness, Marco Iansiti, Newsha Ardalani, Feng Zhu, and Karim R. Lakhani. "Time Dependency, Data Flow, and Competitive Advantage." Harvard Business School Working Paper, No. 21-099, March 2021.
  • January 2024 (Revised February 2024)
  • Case

Data-Driven Denim: Financial Forecasting at Levi Strauss

By: Mark Egan
The case examines Levi Strauss’ journey in implementing machine learning and AI into its financial forecasting process. The apparel company partnered with the IT company Wipro in 2017 to develop a machine learning algorithm that could help Levi Strauss forecast its... View Details
Keywords: Investor Relations; Forecasting; Machine Learning; Artificial Intelligence; Apparel; Corporate Finance; Forecasting and Prediction; AI and Machine Learning; Digital Transformation; Apparel and Accessories Industry; United States
Citation
Educators
Purchase
Related
Egan, Mark. "Data-Driven Denim: Financial Forecasting at Levi Strauss." Harvard Business School Case 224-029, January 2024. (Revised February 2024.)
  • March 2019
  • Case

DayTwo: Going to Market with Gut Microbiome

By: Ayelet Israeli and David Lane
DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals. After a first year of trial rollout in... View Details
Keywords: Start-up Growth; Startup; Positioning; Targeting; Go To Market Strategy; B2B2C; B2B Vs. B2C; Health & Wellness; AI; Machine Learning; Female Ceo; Female Protagonist; Science-based; Science And Technology Studies; Ecommerce; Applications; DTC; Direct To Consumer Marketing; US Health Care; "USA,"; Innovation; Pricing; Business Growth; Segmentation; Distribution Channels; Growth and Development Strategy; Business Startups; Science-Based Business; Health; Innovation and Invention; Marketing; Information Technology; Business Growth and Maturation; E-commerce; Applications and Software; Health Industry; Technology Industry; Insurance Industry; Information Technology Industry; Food and Beverage Industry; Israel; United States
Citation
Educators
Purchase
Related
Israeli, Ayelet, and David Lane. "DayTwo: Going to Market with Gut Microbiome." Harvard Business School Case 519-010, March 2019.
  • November 2020
  • Teaching Note

DayTwo: Going to Market with Gut Microbiome

By: Ayelet Israeli
Teaching Note for HBS Case No. 519-010. DayTwo is a young Israeli startup that applies research on the gut microbiome and machine learning algorithms to deliver personalized nutritional recommendations to its users in order to minimize blood sugar spikes after meals.... View Details
Keywords: Start-up Growth; Startup; Positioning; Targeting; Go To Market Strategy; B2B Vs. B2C; B2B2C; Health & Wellness; AI; Machine Learning; Female Ceo; Female Protagonist; Science-based; Science And Technology Studies; Ecommerce; Applications; DTC; Direct To Consumer Marketing; US Health Care; "USA,"; Innovation; Pricing; Business Growth; Segmentation; Distribution Channels; Growth and Development Strategy; Business Startups; Science-Based Business; Health; Innovation and Invention; Marketing; Information Technology; Business Growth and Maturation; E-commerce; Applications and Software; Health Industry; Technology Industry; Insurance Industry; Information Technology Industry; Food and Beverage Industry; Israel; United States
Citation
Purchase
Related
Israeli, Ayelet. "DayTwo: Going to Market with Gut Microbiome." Harvard Business School Teaching Note 521-052, November 2020.
  • 24 Jul 2023
  • Research & Ideas

Part-Time Employees Want More Hours. Can Companies Tap This ‘Hidden’ Talent Pool?

many such workers are caregivers, excluded from full-time jobs because short-sighted employers don’t offer them the flexibility they need. Filtered out by hiring algorithms due to employment gaps or other hiring “red flags,” these willing... View Details
Keywords: by Kara Baskin
  • 09 Jan 2024
  • In Practice

Harnessing AI: What Businesses Need to Know in ChatGPT’s Second Year

includes addressing algorithmic biases, safeguarding privacy, ensuring security and copyright protection, as well as promoting transparency, fairness, and interpretability. Deploying mechanisms for responsible View Details
Keywords: by Rachel Layne; Information Technology
  • 2025
  • Working Paper

Is Love Blind? AI-Powered Trading with Emotional Dividends

By: De-Rong Kong and Daniel Rabetti
We leverage the non-fungible tokens (NFTs) setting to assess the valuation of emotional dividends (LOVE), a long-standing empirical challenge in private-value markets such as art, antiques, and collectibles. Having created and validated our proxy, we use deep learning... View Details
Keywords: NFTs; Non-fungible Tokens; AI and Machine Learning; Valuation; Financial Markets
Citation
SSRN
Related
Kong, De-Rong, and Daniel Rabetti. "Is Love Blind? AI-Powered Trading with Emotional Dividends." Working Paper, February 2025.
  • July 2024
  • Article

How Artificial Intelligence Constrains Human Experience

By: A. Valenzuela, S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino and K. Wertenbroch
Many consumption decisions and experiences are digitally mediated. As a consequence, consumer behavior is increasingly the joint product of human psychology and ubiquitous algorithms (Braun et al. 2024; cf. Melumad et al. 2020). The coming of age of Large Language... View Details
Keywords: Large Language Model; User Experience; AI and Machine Learning; Consumer Behavior; Technology Adoption; Risk and Uncertainty; Cost vs Benefits
Citation
Find at Harvard
Read Now
Purchase
Related
Valenzuela, A., S. Puntoni, D. Hoffman, N. Castelo, J. De Freitas, B. Dietvorst, C. Hildebrand, Y.E. Huh, R. Meyer, M. Sweeney, S. Talaifar, G. Tomaino, and K. Wertenbroch. "How Artificial Intelligence Constrains Human Experience." Journal of the Association for Consumer Research 9, no. 3 (July 2024): 241–256.
  • 2025
  • Working Paper

Warnings and Endorsements: Improving Human-AI Collaboration in the Presence of Outliers

By: Matthew DosSantos DiSorbo, Kris Ferreira, Maya Balakrishnan and Jordan Tong
Problem definition: While artificial intelligence (AI) algorithms may perform well on data that are representative of the training set (inliers), they may err when extrapolating on non-representative data (outliers). How can humans and algorithms work together to make... View Details
Keywords: AI and Machine Learning; Decision Choices and Conditions
Citation
Read Now
Related
DosSantos DiSorbo, Matthew, Kris Ferreira, Maya Balakrishnan, and Jordan Tong. "Warnings and Endorsements: Improving Human-AI Collaboration in the Presence of Outliers." Working Paper, May 2025.
  • November 2021 (Revised December 2021)
  • Supplement

PittaRosso (B): Human and Machine Learning

By: Ayelet Israeli
This case supplements the "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion" case, and provides major highlights on what happened at the company since the first case. View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Marketing; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Citation
Purchase
Related
Israeli, Ayelet. "PittaRosso (B): Human and Machine Learning." Harvard Business School Supplement 522-047, November 2021. (Revised December 2021.)
  • 08 Nov 2016
  • First Look

November 8, 2016

consequence of actual leverage than it is of risk premiums. Standardized Color in the Food Industry: The Co-Creation of the Food Coloring Business in the United States, 1870–1940 By: Hisano, Ai Abstract—This working paper examines how,... View Details
Keywords: Sean Silverthorne
  • September 2022 (Revised November 2022)
  • Teaching Note

PittaRosso: Artificial Intelligence-Driven Pricing and Promotion

By: Ayelet Israeli
Teaching Note for HBS Case No. 522-046. View Details
Keywords: Artificial Intelligence; Pricing; Pricing Algorithm; Pricing Decisions; Pricing Strategy; Pricing Structure; Promotion; Promotions; Online Marketing; Data-driven Decision-making; Data-driven Management; Retail; Retail Analytics; Price; Advertising Campaigns; Analytics and Data Science; Analysis; Digital Marketing; Budgets and Budgeting; Marketing Strategy; Transformation; Decision Making; AI and Machine Learning; Retail Industry; Italy
Citation
Purchase
Related
Israeli, Ayelet. "PittaRosso: Artificial Intelligence-Driven Pricing and Promotion." Harvard Business School Teaching Note 523-020, September 2022. (Revised November 2022.)
  • November–December 2024
  • Article

Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing

By: Kirk Bansak and Elisabeth Paulson
This study proposes two new dynamic assignment algorithms to match refugees and asylum seekers to geographic localities within a host country. The first, currently implemented in a multi-year pilot in Switzerland, seeks to maximize the average predicted employment... View Details
Keywords: AI and Machine Learning; Refugees; Geographic Location; Employment
Citation
Find at Harvard
Purchase
Related
Bansak, Kirk, and Elisabeth Paulson. "Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing." Operations Research 72, no. 6 (November–December 2024): 2375–2390.
  • 2019
  • Article

An Empirical Study of Rich Subgroup Fairness for Machine Learning

By: Michael J Kearns, Seth Neel, Aaron Leon Roth and Zhiwei Steven Wu
Kearns et al. [2018] recently proposed a notion of rich subgroup fairness intended to bridge the gap between statistical and individual notions of fairness. Rich subgroup fairness picks a statistical fairness constraint (say, equalizing false positive rates across... View Details
Keywords: Machine Learning; Fairness; AI and Machine Learning
Citation
Read Now
Related
Kearns, Michael J., Seth Neel, Aaron Leon Roth, and Zhiwei Steven Wu. "An Empirical Study of Rich Subgroup Fairness for Machine Learning." Proceedings of the Conference on Fairness, Accountability, and Transparency (2019): 100–109.
  • Forthcoming
  • Article

Human-Algorithm Collaboration with Private Information: Naïve Advice Weighting Behavior and Mitigation

By: Maya Balakrishnan, Kris Ferreira and Jordan Tong
Even if algorithms make better predictions than humans on average, humans may sometimes have private information which an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by... View Details
Keywords: AI and Machine Learning; Analytics and Data Science; Forecasting and Prediction; Digital Marketing
Citation
Find at Harvard
Read Now
Purchase
Related
Balakrishnan, Maya, Kris Ferreira, and Jordan Tong. "Human-Algorithm Collaboration with Private Information: Naïve Advice Weighting Behavior and Mitigation." Management Science (forthcoming). (Pre-published online March 24, 2025.)
  • ←
  • 1
  • 2
  • 3
  • 4
  • 5
  • →

Are you looking for?

→Search All HBS Web
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.