Filter Results:
(1,567)
Show Results For
- All HBS Web
(12,547)
- Faculty Publications (1,567)
Show Results For
- All HBS Web
(12,547)
- Faculty Publications (1,567)
- June 2023
- Article
When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making
By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
As machine learning (ML) models are increasingly being employed to assist human decision
makers, it becomes critical to provide these decision makers with relevant inputs which can
help them decide if and how to incorporate model predictions into their decision... View Details
McGrath, Sean, Parth Mehta, Alexandra Zytek, Isaac Lage, and Himabindu Lakkaraju. "When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making." Transactions on Machine Learning Research (TMLR) (June 2023).
- 2023
- Article
Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators
By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in... View Details
Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
- May 9, 2023
- Article
8 Questions About Using AI Responsibly, Answered
By: Tsedal Neeley
Generative AI tools are poised to change the way every business operates. As your own organization begins strategizing which to use, and how, operational and ethical considerations are inevitable. This article delves into eight of them, including how your organization... View Details
Neeley, Tsedal. "8 Questions About Using AI Responsibly, Answered." Harvard Business Review (website) (May 9, 2023).
- May 2023
- Article
Decarbonizing Health Care: Engaging Leaders in Change
By: Vivian S. Lee, Kathy Gerwig, Emily Hough, Kedar Mate, Robert Biggio and Robert S. Kaplan
Health care leaders are often surprised to learn that their operations contribute
significantly to a warming climate. In addition to their roles as responders to and victims
of extreme weather events, health care organizations have an obligation to reduce... View Details
Keywords: Health Care; Decarbonization; Carbon Emissions; Net-zero Emissions; Climate Change; Health Care and Treatment; Health Industry
Lee, Vivian S., Kathy Gerwig, Emily Hough, Kedar Mate, Robert Biggio, and Robert S. Kaplan. "Decarbonizing Health Care: Engaging Leaders in Change." NEJM Catalyst Innovations in Care Delivery 4, no. 5 (May 2023).
- March 2023
- Article
Developing Moral Muscle in a Literature-based Business Ethics Course
By: Inge M. Brokerhof, Sandra J. Sucher, P. Matthijs Bal, Frank Hakemulder, Paul G. W. Jansen and Omar N. Solinger
Moral subjectivity (e.g., reflexivity, perspective-taking) is a necessary condition for moral
development. However, widely used approaches to business ethics education, rooted in
conceptualizations of ethical development as objective and quantifiable, often neglect... View Details
Brokerhof, Inge M., Sandra J. Sucher, P. Matthijs Bal, Frank Hakemulder, Paul G. W. Jansen, and Omar N. Solinger. "Developing Moral Muscle in a Literature-based Business Ethics Course." Academy of Management Learning & Education 22, no. 1 (March 2023): 63–87.
- 2023
- Article
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means... View Details
Pawelczyk, Martin, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju. "Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse." Proceedings of the International Conference on Learning Representations (ICLR) (2023).
- April 12, 2023
- Article
Using AI to Adjust Your Marketing and Sales in a Volatile World
By: Das Narayandas and Arijit Sengupta
Why are some firms better and faster than others at adapting their use of customer data to respond to changing or uncertain marketing conditions? A common thread across faster-acting firms is the use of AI models to predict outcomes at various stages of the customer... View Details
Keywords: Forecasting and Prediction; AI and Machine Learning; Consumer Behavior; Technology Adoption; Competitive Advantage
Narayandas, Das, and Arijit Sengupta. "Using AI to Adjust Your Marketing and Sales in a Volatile World." Harvard Business Review Digital Articles (April 12, 2023).
- 2024
- Working Paper
Using LLMs for Market Research
By: James Brand, Ayelet Israeli and Donald Ngwe
Large language models (LLMs) have rapidly gained popularity as labor-augmenting
tools for programming, writing, and many other processes that benefit from quick text
generation. In this paper we explore the uses and benefits of LLMs for researchers and
practitioners... View Details
Keywords: Large Language Model; Research; AI and Machine Learning; Analysis; Customers; Consumer Behavior; Technology Industry; Information Technology Industry
Brand, James, Ayelet Israeli, and Donald Ngwe. "Using LLMs for Market Research." Harvard Business School Working Paper, No. 23-062, April 2023. (Revised July 2024.)
- April 2023
- Case
Fizzy Fusion: When Data-Driven Decision Making Failed
By: Michael Parzen, Eddie Lin, Douglas Ng and Jessie Li
This is a case about a fictional New York beverage company called Fizzy Fusion. The business is facing supply chain and inventory management challenges with its new product, SparklingSip. Despite seeking help from a data science consulting firm, the machine learning... View Details
Keywords: Supply Chain Management; Production; Risk and Uncertainty; Analytics and Data Science; Food and Beverage Industry
Parzen, Michael, Eddie Lin, Douglas Ng, and Jessie Li. "Fizzy Fusion: When Data-Driven Decision Making Failed." Harvard Business School Case 623-071, April 2023.
- April 2023 (Revised February 2024)
- Case
AI Wars
By: Andy Wu, Matt Higgins, Miaomiao Zhang and Hang Jiang
In February 2024, the world was looking to Google to see what the search giant and long-time putative technical leader in artificial intelligence (AI) would do to compete in the massively hyped technology of generative AI. Over a year ago, OpenAI released ChatGPT, a... View Details
Keywords: AI; Artificial Intelligence; AI and Machine Learning; Technology Adoption; Competitive Strategy; Technological Innovation
Wu, Andy, Matt Higgins, Miaomiao Zhang, and Hang Jiang. "AI Wars." Harvard Business School Case 723-434, April 2023. (Revised February 2024.)
- 2023
- Working Paper
Feature Importance Disparities for Data Bias Investigations
By: Peter W. Chang, Leor Fishman and Seth Neel
It is widely held that one cause of downstream bias in classifiers is bias present in the training data. Rectifying such biases may involve context-dependent interventions such as training separate models on subgroups, removing features with bias in the collection... View Details
Chang, Peter W., Leor Fishman, and Seth Neel. "Feature Importance Disparities for Data Bias Investigations." Working Paper, March 2023.
- April 2023
- Article
Inattentive Inference
By: Thomas Graeber
This paper studies how people infer a state of the world from information structures that include additional, payoff-irrelevant states. For example, learning from a customer review about a product’s quality requires accounting for the reviewer’s otherwise irrelevant... View Details
Graeber, Thomas. "Inattentive Inference." Journal of the European Economic Association 21, no. 2 (April 2023): 560–592.
- April 2023
- Article
Learning Down to Train Up: Mentors Are More Effective When They Value Insights from Below
By: Ting Zhang, Dan Wang and Adam D. Galinsky
Although mentorship is vital for individual success, potential mentors often view it as a costly burden. To understand what motivates mentors to overcome this barrier and more fully engage with their mentees, we introduce a new construct, learning direction, which... View Details
Keywords: Mentoring; Learning Direction; Interpersonal Communication; Learning; Leadership Development
Zhang, Ting, Dan Wang, and Adam D. Galinsky. "Learning Down to Train Up: Mentors Are More Effective When They Value Insights from Below." Academy of Management Journal 66, no. 2 (April 2023): 604–637.
- April 2023
- Article
On the Privacy Risks of Algorithmic Recourse
By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected... View Details
Pawelczyk, Martin, Himabindu Lakkaraju, and Seth Neel. "On the Privacy Risks of Algorithmic Recourse." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 206 (April 2023).
- March–April 2023
- Article
Pricing for Heterogeneous Products: Analytics for Ticket Reselling
By: Michael Alley, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li and Georgia Perakis
Problem definition: We present a data-driven study of the secondary ticket market. In particular, we are primarily concerned with accurately estimating price sensitivity for listed tickets. In this setting, there are many issues including endogeneity, heterogeneity in... View Details
Keywords: Price; Demand and Consumers; AI and Machine Learning; Investment Return; Entertainment and Recreation Industry; Sports Industry
Alley, Michael, Max Biggs, Rim Hariss, Charles Herrmann, Michael Lingzhi Li, and Georgia Perakis. "Pricing for Heterogeneous Products: Analytics for Ticket Reselling." Manufacturing & Service Operations Management 25, no. 2 (March–April 2023): 409–426.
- 2023
- Working Paper
The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities
By: David S. Scharfstein and Sergey Chernenko
We show that the use of algorithms to predict race has significant limitations in measuring and understanding the sources of racial disparities in finance, economics, and other contexts. First, we derive theoretically the direction and magnitude of measurement bias in... View Details
Keywords: Racial Disparity; Paycheck Protection Program; Measurement Error; AI and Machine Learning; Race; Measurement and Metrics; Equality and Inequality; Prejudice and Bias; Forecasting and Prediction; Outcome or Result
Scharfstein, David S., and Sergey Chernenko. "The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities." Working Paper, April 2023.
- March 2023
- Teaching Note
VideaHealth: Building the AI Factory
By: Karim R. Lakhani
Teaching Note for HBS Case No. 621-021. The case “VideaHealth: Building the AI Factory” examines the creation of dental startup VideaHealth (Videa) and the development of its artificial intelligence (AI)-led business strategy through the eyes of founder and CEO Florian... View Details
- March 2023 (Revised January 2024)
- Case
Nigeria: Africa's Giant
"Nigeria: Africa’s Giant" delves into the economic development and state building record of Africa’s most populous country. Despite being one of the continent’s largest oil-exporters, Nigeria’s economy has been struggling, and poverty is widespread. The country’s... View Details
Keywords: Crime and Corruption; Developing Countries and Economies; Government Administration; Poverty; Africa; Nigeria
van Waijenburg, Marlous. "Nigeria: Africa's Giant." Harvard Business School Case 723-056, March 2023. (Revised January 2024.)
- March 2023 (Revised May 2023)
- Case
OneTen at Delta Air Lines: Catalyzing Family-Sustaining Careers for Black Talent (A)
By: Linda A. Hill and Lydia Begag
It was December 10, 2020, and Ed Bastian, the Chief Executive Officer (CEO) of Delta Air Lines (Delta), had just finished a meeting with Joanne Smith, Executive Vice President and Chief People Officer, and Keyra Lynn Johnson, the Chief Diversity and Inclusion Officer.... View Details
Keywords: Recruitment; Training; Race; Equality and Inequality; Corporate Social Responsibility and Impact; Job Design and Levels; Air Transportation Industry; United States
Hill, Linda A., and Lydia Begag. "OneTen at Delta Air Lines: Catalyzing Family-Sustaining Careers for Black Talent (A)." Harvard Business School Case 423-072, March 2023. (Revised May 2023.)
- March 2023 (Revised June 2023)
- Case
Pratham 2.0: Sustaining Innovation
By: Brian Trelstad, Samantha Webster and Malini Sen
Pratham is a Mumbai-based nonprofit, which focuses on high-quality, low-cost, and replicable interventions to address gaps in India’s education system. From inception, it has pioneered innovation, from early childhood learning centers to adaptive literacy programs, to... View Details